Studi Numerik Pengaruh Geometri Tube dan Variasi Baffle terhadap Perpindahan Kalor pada Heat Exchanger Tipe Shell and Tube

Authors

  • Eko Wahyu Saputro Sekolah Tinggi Teknologi “Warga” Surakarta
  • Agus Jamaldi Sekolah Tinggi Teknologi “Warga” Surakarta

DOI:

https://doi.org/10.51903/juritek.v5i3.5334

Keywords:

Heat exchanger, shell and tube, baffle, tube geometry, ANSYS Fluent, CFD

Abstract

This research aims to numerically investigate the effect of tube geometry and baffle variation on heat transfer performance in a shell-and-tube heat exchanger. The model employed a honeycomb tube geometry with baffle height variations of 65%, 75%, and 85%. Numerical simulations were conducted using ANSYS Fluent 2024 R2 with mass flow rates ranging from 0.25 to 1 kg/s. The analyzed parameters included outlet temperatures of hot and cold fluids, heat flow, and flow distribution visualized through contour and streamline plots. The results show that increasing mass flow rate leads to a higher heat flow rate but reduces the hot fluid outlet temperature due to shorter contact time. Baffle variation significantly affected performance, with the 85% baffle height producing more turbulent flow and the highest heat flow, reaching 14.89 kW at 1 kg/s. Furthermore, the comparison of tube geometries revealed that oval tubes outperformed honeycomb tubes, achieving a heat flow of up to 40.55 kW under the same conditions. Although the results of this study are less optimal compared to previous research, it still provides a valuable contribution to the selection of tube geometry types and baffle heights in shell-and-tube heat exchangers.

References

[1] Akif kartal, M., & feyzioğlu, A. (2023). Numerical analysis of multipurpose shell-tube-heat exchanger withal stylized geometry at different baffle gaps and various flow rates. Case Studies in Thermal Engineering, 52. https://doi.org/10.1016/j.csite.2023.103810

[2] Al Hakim, M. I., Bakrie, M., & Rasyidi, N. (2024). Pengaruh Baffle Cut Pada Shell dan Tube Heat Exchanger Terhadap Koefisien Perpindahan Panas Menyeluruh & Penurunan Tekanan. Jurnal Redoks, 9(2), 177–195. https://doi.org/10.31851/redoks.v9i2.9089

[3] Alim, M. I. (2020). Uji Konduktivitas Termal Material Non Logam. https://www.researchgate.net/publication/338911208

[4] Alrwashdeh, S. S., Ammari, H., Madanat, M. A., & Al-Falahat, A. M. (2022). The effect of heat exchanger design on heat transfer rate and temperature distribution. Emerging Science Journal, 6(1), 128–137.

[5] Ariwibowo, T. H., Permatasari, P. D., & Kurniawan, A. (2017). Experimental study of double pipe heat exchanger performance equipped with perforated twisted tape considering various twist ratio. Proceedings IES-ETA 2017 - International Electronics Symposium on Engineering Technology and Applications, 2017-December, 203–206. https://doi.org/10.1109/ELECSYM.2017.8240403

[6] Daneshparvar, M. R., & Beigzadeh, R. (2022). Multi-objective optimization of helical baffles in the shell-and-tube heat exchanger by computational fluid dynamics and genetic algorithm. Energy Reports, 8, 11064–11077. https://doi.org/10.1016/j.egyr.2022.08.249

[7] [Estupiñán-Campos, J., Quitiaquez, W., Nieto-Londoño, C., & Quitiaquez, P. (2024). Numerical Simulation of the Heat Transfer Inside a Shell and Tube Heat Exchanger Considering Different Variations in the Geometric Parameters of the Design. Energies, 17(3). https://doi.org/10.3390/en17030691

[8] Farhat, O., Faraj, J., Hachem, F., Castelain, C., & Khaled, M. (2022). A recent review on waste heat recovery methodologies and applications: Comprehensive review, critical analysis and potential recommendations. Cleaner Engineering and Technology, 6, 100387. https://doi.org/https://doi.org/10.1016/j.clet.2021.100387

[9] Handoyo, E. A. (2001). Pengaruh Penggunaan Baffle pada Shell-and-Tube Heat Exchanger. http://puslit.petra.ac.id/journals/mechanical/

[10] Ja’fari, M., Khan, M. I., Al-Ghamdi, S. G., Jaworski, A. J., & Asfand, F. (2023). Waste heat recovery in iron and steel industry using organic Rankine cycles. Chemical Engineering Journal, 477, 146925. https://doi.org/https://doi.org/10.1016/j.cej.2023.146925

[11] Li, Q., Zhu, X., Dong, C., Cao, R., Gu, H., Li, D., Ye, Y., & Yang, Y. (2023). Investigation of noncircular orifice supporting baffle longitudinal flow heat exchangers. Case Studies in Thermal Engineering, 47. https://doi.org/10.1016/j.csite.2023.103104

[12] Marzouk, S. A., Sharaf, M. A., Aljabr, A., Almehmadi, F. A., Alam, T., & Malik, I. (2024). Effects of baffles and springs in shell and multi-tube heat exchangers: Comparative approach. Case Studies in Thermal Engineering, 61. https://doi.org/10.1016/j.csite.2024.104996

[13] Prajapati, P., Raja, B. D., Patel, V., & Jouhara, H. (2024). Energy-economic analysis and optimization of a shell and tube heat exchanger using a multi-objective heat transfer search algorithm. Thermal Science and Engineering Progress, 56. https://doi.org/10.1016/j.tsep.2024.103021

[14] Prihartono, J., & Irhamsyah, R. (2022). ANALISIS KONDUKTIVITAS TERMAL PADA MATERIAL LOGAM (TEMBAGA, ALUMUNIUM DAN BESI). In PRESISI (Vol. 24, Issue 2).

[15] Putra, E. H., & Bizzy, I. (2020). Pengaruh jumlah baffle terhadap kinerja alat penukar kalor tipe shell and tube. Tc, 1(32), 88.

[16] Thundil Karuppa Raj, by R., & Ganne, S. (n.d.). SHELL SIDE NUMERICAL ANALYSIS OF A SHELL AND TUBE HEAT EXCHANGER CONSIDERING THE EFFECTS OF BAFFLE INCLINATION ANGLE ON FLUID FLOW USING CFD.

[17] Waleed, M., Naqvi, S. M. A., Mustafa, H., Al Mesfer, M. K., Danish, M., Irshad, K., & Shahzad, H. (2025). Numerical analysis of shell and tube heat exchanger with combination of different baffles. Case Studies in Thermal Engineering, 65. https://doi.org/10.1016/j.csite.2024.105658

Downloads

Published

2025-11-20

How to Cite

Eko Wahyu Saputro, & Agus Jamaldi. (2025). Studi Numerik Pengaruh Geometri Tube dan Variasi Baffle terhadap Perpindahan Kalor pada Heat Exchanger Tipe Shell and Tube. Jurnal Ilmiah Teknik Mesin, Elektro Dan Komputer, 5(3), 162–170. https://doi.org/10.51903/juritek.v5i3.5334