Optimalisasi Sistem Database sebagai Pilar Penguatan Sistem Informasi Manajemen di Era Transformasi Digital Modern

Authors

  • Putri Newa Glenda Azra Universitas Esa Unggul
  • Maerani Ikwanda Universitas Esa Unggul
  • Noviana Poernama Sari Universitas Esa Unggul
  • Tiffany Wahidah Prameswari Universitas Esa Unggul
  • Fachmi Tamzil Universitas Esa Unggul

DOI:

https://doi.org/10.55606/jupsim.v4i2.5031

Keywords:

Cloud, Database, Information System, IT Management, Monitoring

Abstract

As the complexity of modern web applications continues to increase—particularly with the rise of Single-Page Applications (SPAs)—the need for effective monitoring mechanisms becomes more critical to support fast and accurate debugging processes. One promising approach is the implementation of a monitoring system based on Database Management Systems (DBMS), which allows for systematic logging and tracking of execution data within the application’s runtime environment. This study aims to explore the role of DBMS in supporting bug reproduction, a process that involves recreating a previously encountered bug by collecting real-time information such as activity logs, event traces, and environmental variables. The research method includes the development of a monitoring prototype integrated into a web application, where all runtime data is stored in a centralized database. Experimental evaluations were conducted on large-scale web applications to assess the system’s effectiveness in detecting and reproducing bugs. The results indicate that DBMS-based monitoring significantly improves debugging efficiency by providing contextual execution data that would otherwise be undocumented. Case studies involving the implementation of database systems like MySQL and SQLite in mobile applications demonstrated improvements in both reliability and data access speed for log management. These findings show that integrating monitoring with DBMS contributes meaningfully to maintaining software quality. However, this integration also introduces technical challenges, such as heavy logging loads, potential latency, and data security concerns. To address these issues, this study recommends optimization strategies including caching mechanisms, asynchronous I/O operations, and the adoption of cloud-native architectures to enhance system scalability and performance. By applying these approaches, bug reproduction can be performed more quickly, accurately, and efficiently—ultimately supporting the development of robust and reliable web applications in today’s digital era. This research highlights the importance of runtime observability and structured monitoring as key elements in modern software maintenance and debugging workflows. 

References

Bratha, W. G. E. (2022). Literature Review Komponen Sistem Informasi Manajemen: Software, Database Dan Brainware. Jurnal Ekonomi Manajemen Sistem Informasi, 3(3), 344–360.

Coronel, C., & Morris, S. (2019). Database Systems: Design, Implementation, & Management (13th ed.). Cengage Learning.

Dalle, J., & Fitri, A. (2021). Transformasi Digital Berbasis Cloud Computing: Studi Kasus Pemanfaatan Database di Instansi Pemerintah. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(2), 157–166. https://doi.org/10.25126/jtiik.2021822020

DataSunrise. (2024). Database Logging: Best Practices and Solutions. https://www.datasunrise.com/knowledge-center/database-for-logging/

Hansyah, S., Zai, D., Irwan, M., & Nasution, P. (2024). Peran Basis Data Dalam Transformasi Digital di Era Industri. Journal of Sharia Economics Scholar (JoSES), 20(2), 84–86. https://doi.org/10.5281/zenodo.12528183

Madupati, B. (2025). Observability in Microservices Architectures: Leveraging Logging, Metrics, and Distributed Tracing in Large-Scale Systems. SSRN Electronic Journal, 10(11), 24–31. https://doi.org/10.2139/ssrn.5076624

Microsoft. (2025). Architecture best practices for Log Analytics. Microsoft Ignite. https://learn.microsoft.com/en-us/azure/well-architected/service-guides/azure-log-analytics

Ningsih, N., Karimatun Nisa, Endryco Farel Rianrachmatullah, Bintang Desta Ramadhani, & Afifah Dwi Ramadhani. (2024). Optimalisasi monitoring tag dengan AWS Cloud: Studi kasus aplikasi tagtracker pada PT. XYZ. INFOTECH: Jurnal Informatika & Teknologi, 5(1), 88–98. https://doi.org/10.37373/infotech.v5i1.1163

O'Brien, J. A., & Marakas, G. M. (2017). Management Information Systems (11th ed.). McGraw-Hill Education.

Rawat, B., Purnama, S., & Mulyati, M. (2021). MySQL Database Management System (DBMS) On FTP Site LAPAN Bandung. International Journal of Cyber and IT Service Management, 1(2), 173–179. https://doi.org/10.34306/ijcitsm.v1i2.47

Rifa’i, M. A., & Nugroho, Y. (2023). Penerapan Data Warehouse dalam Penguatan Sistem Informasi Manajemen Rumah Sakit. Jurnal Teknologi dan Sistem Informasi, 9(1), 45–55. https://doi.org/10.21070/jtsi.v9i1.1735

Silberschatz, A., Korth, H. F., & Sudarshan, S. (2020). Database System Concepts (7th ed.). McGraw-Hill Education.

Sunkara, J. R., Bauskar, S. R., Madhavaram, C. R., Galla, E. P., & Gollangi, H. K. (2023). Optimizing Cloud Computing Performance with Advanced DBMS Techniques: A Comparative Study. Journal for ReAttach Therapy and Developmental Diversities, 6(2), 2493–2502. https://doi.org/10.53555/jrtdd.v6i10s(2).3206

Wang, D., Galster, M., & Morales-Trujillo, M. (2024). Application Monitoring for bug reproduction in web-based applications. Journal of Systems and Software, 207(September 2023), 111834. https://doi.org/10.1016/j.jss.2023.111834

Wang, D., Galster, M., & Morales-Trujillo, M. (2025). Information needs in bug reports for web applications. Journal of Systems and Software, 219(September 2024), 112230. https://doi.org/10.1016/j.jss.2024.112230

Downloads

Published

2025-05-31

How to Cite

Putri Newa Glenda Azra, Maerani Ikwanda, Noviana Poernama Sari, Tiffany Wahidah Prameswari, & Fachmi Tamzil. (2025). Optimalisasi Sistem Database sebagai Pilar Penguatan Sistem Informasi Manajemen di Era Transformasi Digital Modern. Jurnal Publikasi Sistem Informasi Dan Manajemen Bisnis, 4(2), 487–496. https://doi.org/10.55606/jupsim.v4i2.5031