Geospatial Artificial Intelligence for Flood Disaster Mapping in Sumatra: A Review of Machine Learning Models, Data, and Computational Workflows
DOI:
https://doi.org/10.55606/jupti.v5i1.6403Keywords:
Flood Mapping, Geospatial Artificial Intelligence, Machine Learning, Sumatra, WorkflowAbstract
Flood disasters pose persistent socio-economic and environmental challenges, particularly in tropical regions such as Sumatra, Indonesia. Traditional hydrological and GIS-based approaches often struggle to capture complex interactions among terrain, rainfall, land use, and human activities. This review critically examines recent applications of Geospatial Artificial Intelligence (GeoAI) for flood disaster mapping, focusing on machine learning models, geospatial data sources, and computational workflows. Analysis of selected studies highlights that satellite imagery and digital elevation models remain dominant data inputs, while Random Forest, Support Vector Machines, Convolutional Neural Networks, and hybrid models are most frequently applied. Workflow patterns reveal recurring stages of data preprocessing, model training, and post-processing, yet gaps persist in model explainability, feature selection, and generalization across regions. The study underscores the importance of integrating multi-source data, standardizing workflows, and fostering interdisciplinary collaboration to enhance operational flood risk management. Findings provide a foundation for advancing GeoAI research and translating methodological innovations into practical flood preparedness and mitigation strategies.
References
Al Ruzouq, R., Shanableh, A., Yilmaz, A. G., Idris, A., Mukherjee, S., & Khalil, M. A. (2024). Integrating machine learning and geospatial data analysis for comprehensive flood hazard assessment. Environmental Science and Pollution Research, 31, 15234–15252. https://doi.org/10.1007/s11356-024-34286-7
Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616
Ashfaq, S., Rahman, A., Khan, M., & Ali, T. (2025). Flood susceptibility assessment and mapping using GIS-based multi-criteria decision analysis. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2025.125275
Atmaja, T., & Fukushi, K. (2022). Empowering geo-based AI algorithm to aid coastal flood risk analysis: A review and framework development. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, V-3, 517–523. https://doi.org/10.5194/isprs-annals-V-3-2022-517-2022
Azeem, N., Naseer, R., & Khan, S. (2025). Integrating geospatial and machine learning approaches for flood risk assessment and disaster management: A case study of Sheikhupura District, Pakistan (2022–2024). Frontiers in Computational Spatial Intelligence, 3(1), 11–20.
Badillo Rivera, E. (2025). Flood susceptibility mapping in El Niño phenomenon areas: Hybrid machine learning and SHAP analysis. Frontiers in Environmental Science. https://doi.org/10.3389/fenvs.2025.1672107
Bentivoglio, R., Isufi, E., Jonkman, S. N., & Taormina, R. (2022). Deep learning methods for flood mapping: A review of existing applications and future research directions. Hydrology and Earth System Sciences, 26, 4345–4378. https://doi.org/10.5194/hess-26-4345-2022
Comprehensive review of machine learning approaches for flood depth estimation. (2025). International Journal of Disaster Risk Science, 16, 433–445. https://doi.org/10.1007/s13753-025-00639-0
Derman, M. T., & Mete, M. O. (2025). Flood risk analysis with explainable geospatial artificial intelligence (GeoAI) techniques. Systems, 13(11), 1007. https://doi.org/10.3390/systems13111007
Destefanis, T., Guliyeva, S., Boccardo, P., & Fissore, V. (2025). Advancing flood detection and mapping: A review of Earth observation services, 3D data integration, and AI-based techniques. Remote Sensing, 17(17), 2943. https://doi.org/10.3390/rs17172943
Feizbahr, M., Rahmati, O., Tiefenbacher, J. P., & Lee, S. (2025). Flood susceptibility mapping using machine learning and Sentinel-1 SAR data for enhanced early warning systems. Remote Sensing, 17(20), 3471. https://doi.org/10.3390/rs17203471
Flood susceptibility mapping: Integrating machine learning and GIS for enhanced risk assessment. (2024). Applied Computing and Geosciences, 23, 100183. https://doi.org/10.1016/j.acags.2024.100183
Islam, T., Zeleke, E. B., Afroz, M., & Melesse, A. M. (2025). A systematic review of urban flood susceptibility mapping: Remote sensing, machine learning, and other modeling approaches. Remote Sensing, 17(3), 524. https://doi.org/10.3390/rs17030524
Li, W., Lee, H., Wang, S., Hsu, C. Y., & Arundel, S. T. (2025). Assessment of a new GeoAI foundation model for flood inundation mapping. arXiv. https://arxiv.org/abs/2510.23364
Mustikaningrum, R., Nugroho, A., & Suryani, E. (2024). Flood susceptibility mapping using machine learning in Kening River sub-watershed of Bengawan Solo, Indonesia. Urban & Environmental Technology, 8(2), 199–210.
Putra, A. R., Nugraheni, D., & Saputra, M. A. (2025). Flood prediction using machine learning model integrated with GIS. Khazanah Informatika: Jurnal Ilmu Komputer dan Informatika, 11(1), 45–54.
Rahman, Z. U., Khan, A., Ali, S., & Ahmad, M. (2025). Flood susceptibility mapping using supervised machine learning models. Environmental Technology & Innovation. https://doi.org/10.1080/19475705.2025.2516728
Rezvani, S. M. H. S., Silva, M. J. F., & Almeida, N. M. d. (2025). Mapping geospatial AI flood risk in national road networks. ISPRS International Journal of Geo-Information, 13(9), 323. https://doi.org/10.3390/ijgi13090323
Santos, L. B. L., Pereira, J., & Costa, R. (2025). Machine learning-based hydrological models for flash floods: Recent advances and challenges. Water. https://doi.org/10.1007/s44268-025-00071-9
Venegas Quiñones, H. L., García Chevesich, P., Valdés Pineda, R., Ferré, T. P. A., Gupta, H., Groenendyk, D., Valdés, J. B., McCray, J. E., & Bakkensen, L. (2024). Creating sustainable flood maps using machine learning and free remote sensing data in unmapped areas. Sustainability, 16(20), 8918. https://doi.org/10.3390/su16208918
Zhang, J., Guo, W., Chang, S. W., Nguyen, D. D., & Ngo, H. H. (2025). Data-driven innovations in flood hazard assessment with machine learning. Environmental Sustainability. Article 2507001017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jurnal Publikasi Teknik Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





