Analisis Pengaruh AI dalam Mendorong Keputusan Penggunaan PayLater melalui Personalisasi Rekomendasi E-Commerce

Authors

  • Ardine Ariella Hassya Universitas Indonesia Membangun, Jawa Barat
  • Debi Irawan Universitas Indonesia Membangun, Jawa Barat
  • Fadhlanrashif Ibrahim Supriyana Universitas Indonesia Membangun, Jawa Barat
  • Athia Saelan Universitas Indonesia Membangun, Jawa Barat
  • Arief Hertadi Rustam Universitas Indonesia Membangun, Jawa Barat

Keywords:

Artificial Intelligence, Personalization, User Experience, PayLater, PLS-SEM

Abstract

In recent years digital technologies have begun to change consumer behavior, including the use of digital financial services like PayLater. The research aims to analyze the impact of AI-powered personalized recommendation systems on user decision-making on the PayLater option, with User Experience (UX) serving as a mediator in the process. This research adopts a quantitative approach using the PLS-SEM methodology. The research used primary data collected through a convenience questionnaire directed to Indonesian e-commerce customers who have used the PayLater feature. The findings of the research show that Artificial Intelligence (AI) personalization positively and significantly influences User Experience as well as the decision to use PayLater. In addition, User Experience partially mediates the impact of Artificial Intelligence (AI) personalization on the decision to use PayLater, thus strengthening the initial relationship. The good scope of the research model in explaining and influencing the dependent variable is indicated by the R² value. Recommendations include the need to strengthen the Artificial Intelligence (AI) powered system to I mprove User Experience and foster the use of formal digital financial services.

References

[1] A. M. Hikmah, N. A. Sofiati, and M. M. Ali, “Analysis of E-Service Quality and Customer Satisfaction on Banking Image : A Survey of Bank XYZ Customers,” vol. 7, no. 1, pp. 22–45, 2025.

[2] Kartika Nuradina, “PSYCHOLOGICAL FACTORS AFFECTS ONLINE BUYING BEHAVIOUR,” J. Bus. Manag. Ina., vol. 01, no. 8.5.2017, pp. 2003–2005, 2022, [Online]. Available: https://journals.inaba.ac.id/index.php/jbmi/article/view/120

[3] C. Sugihono, H. A. Juniarti, and N. C. Nugroho, “Digital Transformation in The Agriculture Sector: Exploring The Shifting Role of Extension Workers,” STI Policy Manag. J., vol. 7, no. 2, 2022, doi: 10.14203/stipm.2022.350.

[4] W. N. Utami and T. A. Juanda, “The Effect of Price Discount and Electronic Word of Mouth,” J. Bus. Manag. Ina., vol. 01, no. 02, pp. 136–152, 2022, [Online]. Available: https://journals.inaba.ac.id/index.php/jbmi/article/view/122/124

[5] E. R. DeLone, William H.; McLean, “The DeLone and McLean Model of Information Systems Success: A Ten-Year Update,” J. Manag. Inf. Syst., vol. 19, no. 4, pp. 9–30, Apr. 2003, doi: 10.1080/07421222.2003.11045748.

[6] D. Krisna and S. Gunawan, “Technology Acceptance Model Untuk Mengukur Kepuasan Pelanggan Dalam Menggunakan Website Hijab.Id,” J. Inform. Komputasi, vol. 16, no. 01, pp. 26–35, 2022.

[7] & B. S. Francesco Ricci, Lior Rokach, Ed., Recommender Systems Handbook (2nd Edition). Springer, 2015. doi: https://doi.org/10.1007/978-1-4899-7637-6.

[8] A. Akbaruddin, Y. Herdian, D. Irawan, and F. Ramadhan, “Pemanfaatan Ai Dalam Automated Market Intelligence (Ami) Untuk Pengambilan Keputusan Strategis Di Era Digital,” J. Sos. Teknol., vol. 5, no. 6, pp. 1721–1729, 2025, doi: 10.59188/jurnalsostech.v5i6.32254.

[9] L. T. Khrais, “Role of Artificial Intelligence in shaping consumer demand in e-commerce,” Futur. Internet, vol. 12, no. 12, pp. 1–14, 2020, doi: 10.3390/fi12120226.

[10] M. Lakshmi Kanth et al., “Personalizing the E-commerce – Experience: A Recommendation System,” MATEC Web Conf., vol. 392, p. 01095, 2024, doi: 10.1051/matecconf/202439201095.

[11] A. Zikry, M. Bitrayoga, S. Y. Defitri, A. Dahlan, and N. D. Putriani, “ANALISIS PENGGUNAAN AI DALAM KEBERHASILAN CUSTOMER EXPERIENCE PENGGUNA APLIKASI E-COMMERCE SHOPEE dan lebih efisien . Perkembangan teknologi digital telah memberikan dampak yang signifikan ( Zurnali , 2024 ). Dalam konteks berbelanja , perkembangan teknol,” vol. 4, no. 3, pp. 766–781, 2024.

[12] H. Rahmi and K. Harahap, “The Influence Of Service Quality, Trust And Customer Satisfaction On Maxim’s Customer Loyalty In Medan City,” J. Econ. Bus., vol. 3, no. 02, pp. 36–45, 2023, doi: 10.58471/jecombi.v3i02.44.

[13] A. Wibowo, Kecerdasan Buatan (AI) pada E-commerce. Semarang, Indonesia: Yayasan Prima Agus Teknik bekerja sama dengan Universitas Sains & Teknologi Komputer (Universitas STEKOM), 2023. [Online]. Available: https://online.fliphtml5.com/amzqn/khfe/#p=2

[14] ISO, “INTERNATIONAL STANDARD interactive systems iTeh STANDARD iTeh STANDARD PREVIEW,” vol. 2019, 2019.

[15] F. D. Davis, “User Acceptance of Information Systems: The Technology Acceptance Model (TAM),” 1987, Division of Research, University of Michigan.

[16] R. R. A. Asri Shopiatul Hajar, Dadan Abdul Aziz Mubarok, Ezra Karamang, Siti Sarah, “Effect Of Service Features, Price, And Service Quality on Online Customer Satisfaction,” J. Bus. Manag. Ina., vol. 3, no. 01, pp. 26–38, 2024, doi: 10.56956/jbmi.v3i01.296.

[17] Z. Huo, “Data statistical analysis on Amazon e-commerce platform for recommender system,” Appl. Comput. Eng., vol. 51, no. 1, pp. 97–103, 2024, doi: 10.54254/2755-2721/51/20241183.

[18] R. Sari, “Pengaruh Penggunaan PayLater Terhadap Perilaku Impulse Buying Pengguna E-commerce di Indonesia,” J. Ris. Bisnis dan Investasi, vol. 7, no. 1, pp. 44–57, 2021, doi: 10.35313/jrbi.v7i1.2058.

[19] K. Meilina, “OJK Catat PayLater Tembus Rp21,89T per Mei, Generasi Muda Paling Banyak Pinjam,” Katadata.co.id. Accessed: Nov. 03, 2025. [Online]. Available: https://katadata.co.id/digital/fintech/686ce4029195f/ojk-catat-pay-later-tembus-rp21-89-t-per-mei-generasi-muda-paling-banyak-pinjam

[20] S. C. Necula and V. D. Păvăloaia, “AI-Driven Recommendations: A Systematic Review of the State of the Art in E-commerce,” Appl. Sci., vol. 13, no. 9, 2023, doi: 10.3390/app13095531.

[21] W. C. Mandagie and R. Kristaung, “The power of AI personalization: Mediated moderation in social & e-commerce,” J. Manaj. dan Pemasar. Jasa, vol. 18, no. 1, pp. 35–58, 2025, doi: 10.25105/v18i1.21587.

[22] J. F. Hair, L. M. Matthews, R. L. Matthews, and M. Sarstedt, “Updated guidelines on which method to use,” Int. J. Multivar. Data Anal., vol. 1, no. 2, p. 107, 2017.

[23] J. Hair and A. Alamer, “Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example,” Res. Methods Appl. Linguist., vol. 1, no. 3, p. 100027, 2022, doi: 10.1016/j.rmal.2022.100027.

[24] Wynne W. Chin, “Modern Methods for Business Research,” Mod. Methods Bus. Res., no. JANUARY 1998, 1998, doi: 10.4324/9781410604385.

Published

2026-01-30

How to Cite

Ardine Ariella Hassya, Debi Irawan, Fadhlanrashif Ibrahim Supriyana, Athia Saelan, & Arief Hertadi Rustam. (2026). Analisis Pengaruh AI dalam Mendorong Keputusan Penggunaan PayLater melalui Personalisasi Rekomendasi E-Commerce. Jurnal Publikasi Ilmu Komputer Dan Multimedia, 5(1), 180–196. Retrieved from https://journalcenter.org/index.php/jupikom/article/view/6092