Implementasi Algoritma Clustering dan Classification dalam Data Mining: Systematic Literature Review terhadap Tren dan Tantangan Terkini

Penulis

  • Jon Kevin Sihombing Universitas Prima Indonesia
  • Bayu Angga Wijaya Universitas Prima Indonesia

DOI:

https://doi.org/10.55606/jupsim.v4i3.5240

Kata Kunci:

Clustering Algorithms, Data Classification, Data Mining, Machine Learning, Metaheuristic Optimization

Abstrak

This study conducts a systematic literature review on the implementation of clustering and classification algorithms in data mining to identify methodological trends and contemporary challenges during the 2021-2025 period. The research methodology employs the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach. Analysis was performed on eight relevant studies from IEEE Xplore, ScienceDirect, Springer, and ACM Digital Library databases. Narrative synthesis was used to comprehensively organize research findings. The results demonstrate the dominance of classification algorithms at 50%, with Random Forest achieving optimal accuracy of 98.35% through Particle Swarm Optimization. Clustering techniques demonstrate effectiveness in data segmentation, with K-means producing optimal configuration through Davies-Bouldin Index of 0.47. Application domains are diversified with the healthcare sector dominating 37.5% of implementations. Applications include diabetes prediction and COVID-19 epidemiological analysis. Hybrid approaches integrate various techniques for comprehensive knowledge extraction, particularly in social media user behavior analytics. Major challenges include computational complexity, methodological transparency deficiency in 66.67% of studies, and algorithm scalability limitations. Practical implications indicate a paradigm transformation in organizational decision-making from reliance on subjective intuition toward objective data-based formulation. Business intelligence technology penetration reaches 31.18% for dashboards and 10.75% for clustering techniques in small and medium enterprise ecosystems, marking substantial evolution in contemporary managerial practices.

Referensi

Aisyah, S., Sembiring, A. C., Sitanggang, D., & Robert. (2023). Penerbit Unpri Press 2023 Universitas Prima Indonesia, 59.

ALASALI, T., & ORTAKCI, Y. (2024). Clustering techniques in data mining: A survey of methods, challenges, and applications. Computer Science, June. https://doi.org/10.53070/bbd.1421527

Asy'ari, N. A. S., & Luthfi, M. (2018). Analisis penerapan konvergensi media pada usaha penyiaran radio di Ponorogo. Perspektif Komunikasi, 1(3).

Bayu Setiawan, M., & Rahmatulloh, A. (2025). Analisis perbandingan model random forest dan XGBoost dalam memprediksi turnover karyawan. Just IT: Jurnal Sistem Informasi, Teknologi Informasi Dan Komputer, 15(2), 393-400.

Fauzi, A., & Yunial, A. H. (2022). Optimasi algoritma klasifikasi Naive Bayes, decision tree, K - nearest neighbor, dan random forest menggunakan algoritma particle swarm opti-mization pada diabetes dataset. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 8(3), 470. https://doi.org/10.26418/jp.v8i3.56656

Husna, F., Rahman, H., & Juhari, J. (2022). Implementasi data mining menggunakan algo-ritma C4.5 pada klasifikasi penjualan hijab. Jurnal Riset Mahasiswa Matematika, 2(2), 40-46. https://doi.org/10.18860/jrmm.v2i2.14891

Moh. Agus Efendi, & Zaehol Fatah. (2025). Penerapan data mining untuk mengelompokkan penyebaran Covid-19 di Indonesia menggunakan algoritma K-Means. Jurnal Maha-siswa Teknik Informatika, 4(1), 118-122. https://doi.org/10.35473/jamastika.v4i1.3653

Octiva, C. S., Fajri, T. I., Sulistiarini, E. B., Suharjo, S., & Nuryanto, U. W. (2024). Penggunaan teknik data mining untuk analisis perilaku pengguna pada media sosial. Jurnal Minfo Polgan, 13(1), 1074-1078. https://doi.org/10.33395/jmp.v13i1.13936

Rismaninda Putri Dwi Prasetya, Azizah, R. N., Halwa, J. B. W., Nugroho, R. H., & Kusumasari, I. R. (2024). Implementasi penggunaan data analytics untuk mengopti-malkan pengambilan keputusan bisnis di era digital. Jurnal Bisnis Dan Komunikasi Digital, 2(2), 12. https://doi.org/10.47134/jbkd.v2i2.3459

Sarlina, B., Nainggolan, S., & Hasanah, S. (2018). Implementasi data mining menggunakan algoritma C4.5 pada klasifikasi penjualan fashion muslimah. Journal Computer Science and Information Technology (JCoInT) Program Studi Teknologi Informasi, 2, 217-227.

Sharma, N., Bogey, Dr. R., & Prasad, Prof. R. (2024). A review on data mining issues, solution & techniques. International Journal For Multidisciplinary Research, 6(4), 1-9. https://doi.org/10.36948/ijfmr.2024.v06i04.26654

Stefanus, K., & Leong, H. (2024). Comparison of random forest algorithm accuracy with XGBoost using hyperparameters. Proxies: Jurnal Informatika, 7(1), 15-23. https://doi.org/10.24167/proxies.v7i1.12464

Susanto, D., Risnita, & Jailani, M. S. (2023). Teknik pemeriksaan keabsahan data dalam penelitian ilmiah. Jurnal QOSIM Jurnal Pendidikan Sosial & Humaniora, 1(1), 53-61. https://doi.org/10.61104/jq.v1i1.60

Tsiu, S. V., Ngobeni, M., Mathabela, L., & Thango, B. (2025). Applications and competitive advantages of data mining and business intelligence in SMEs performance: A systematic review. Businesses, 5(2), 22. https://doi.org/10.3390/businesses5020022

Wahyu Istalama Firdaus, A. (2021). Text mining dan pola algoritma dalam penyelesaian masalah informasi: (Sebuah ulasan). Jurnal JUPITER, 13(1), 66.

Diterbitkan

2025-09-29

Cara Mengutip

Jon Kevin Sihombing, & Wijaya, B. A. (2025). Implementasi Algoritma Clustering dan Classification dalam Data Mining: Systematic Literature Review terhadap Tren dan Tantangan Terkini. Jurnal Publikasi Sistem Informasi Dan Manajemen Bisnis, 4(3), 372–386. https://doi.org/10.55606/jupsim.v4i3.5240