Analisis Pengaruh Algoritma Rekomendasi TikTok terhadap Perilaku Konsumsi Konten Menggunakan Metode Data Mining dan Machine Learning

Authors

  • Muhamad Nur Fitrianto Universitas Pamulang

DOI:

https://doi.org/10.55606/jupti.v4i2.4225

Keywords:

Content Consumption Behavior, Machine Learning Data Mining, Recommendation Algorithms, TikTok

Abstract

This research is motivated by the central role of recommendation algorithms in shaping the content consumption patterns of social media users, particularly on TikTok, which is experiencing rapid growth globally and locally. The research aims to analyze the influence of personal relevance, engagement rate, and frequency of exposure variables in TikTok's recommendation algorithm on content consumption behavior among users in Indonesia. An explanatory quantitative approach was used, with data collected through an online questionnaire involving 400 active TikTok users aged 18-35, which was then analyzed using multiple linear regression to test the relationships between variables. The results reveal that these three variables collectively contribute 68% to the variation in content consumption behavior, emphasizing the importance of recommendation algorithms in shaping user interaction with the platform. In conclusion, this research enriches the theoretical understanding of the influence of algorithms on digital behavior. It provides practical implications for platform developers and policymakers to enhance transparency and digital literacy to create a healthier and more diverse digital ecosystem.

References

Bhandari, A., & Bimo, S. (2022). Why’s Everyone on TikTok Now? The Algorithmized Self and the Future of Self-Making on Social Media. Social Media and Society, 8(1). https://doi.org/10.1177/20563051221086241

Boeker, M., & Urman, A. (2022). An Empirical Investigation of Personalization Factors on TikTok. In Proceedings of the ACM Web Conference 2022 (Vol. 1, Issue 1). Association for Computing Machinery. https://doi.org/10.1145/3485447.3512102

Bojic, L., Bulatovic, A., & Zikic, S. (2022). The Scary Black Box: AI Driven Recommender Algorithms as The Most Powerful Social Force. Ethnology and Anthropology, 17(2). https://doi.org/10.21301/eap.v17i2.11

Chandra, E., & Duta, M. W. (2023). Kekuatan Algoritma Dalam Komunikasi Pemasaran Digital Aplikasi Tiktok. Jurnal Penerangan Agama, Pariwisata Budaya, Dan Ilmu Komunikasi, 7(2), 191–200. https://doi.org/10.55115/duta.v7i2.3860

Dahniar, S., Anugra, W., Sakinah, A., Febrianti, W., & Hasan, M. (2023). Utilization of TikTok Shop Interactive Features and Their Impact on Consumer Purchasing Decisions. International Journal of Asian Business and Management, 2(6), 947–960. https://doi.org/10.55927/ijabm.v2i6.6891

Felaco, C. (2025). Making Sense of Algorithm: Exploring TikTok Users’ Awareness of Content Recommendation and Moderation Algorithms. International Journal of Communication, 19(February), 1081–1102.

Klug, D., Qin, Y., Evans, M., & Kaufman, G. (2021). Trick and Please. A Mixed-Method Study on User Assumptions about the TikTok Algorithm. ACM International Conference Proceeding Series, 84–92. https://doi.org/10.1145/3447535.3462512

Lan, Y. (2023). Research on the Impact of Recommendation Algorithms on User Stickiness Based on Data Analysis of TikTok. Applied and Computational Engineering, 8(1), 280–286. https://doi.org/10.54254/2755-2721/8/20230166

Morales-Navarro, L., Kafai, Y. B., Nguyen, H., DesPortes, K., Vacca, R., Matuk, C., Silander, M., Amato, A., Woods, P. J., Castro, F., Shaw, M. S., Akgun, S., Greenhow, C., & Garcia, A. (2024). Learning about Data, Algorithms, and Algorithmic Justice on TikTok in Personally Meaningful Ways. Proceedings of the 18th International Conference of the Learning Sciences - ICLS 2024, 1973–1980. https://doi.org/10.22318/icls2024.704174

Mousavi, S., Gummadi, K. P., & Zannettou, S. (2024). Auditing Algorithmic Explanations of Social Media Feeds: A Case Study of TikTok Video Explanations. Proceedings of the International AAAI Conference on Web and Social Media, 18(Icwsm), 1110–1122. https://doi.org/10.1609/icwsm.v18i1.31376

Oktaheriyani, D., Wafa, M. A., & Shadiqien, S. (2020). Analisis Perilaku Komunikasi Pengguna Media Sosial TikToK (Studi Pada Mahasiswa Fakultas Ilmu Sosial dan Ilmu Politik UNISKA MAB Banjarmasin). EPRINTS UNISKA, 1–62. http://eprints.uniska-bjm.ac.id/id/eprint/3504

Sinaga, S. C., & Mailin, M. (2023). Pengaruh Aplikasi Tiktok Terhadap Perubahan Gaya Hidup dan Pola Pikir Masyarakat di Silau Bayu Kecamatan Gunung Maligas. Al Qalam: Jurnal Ilmiah Keagamaan Dan Kemasyarakatan, 17(5), 3426. https://doi.org/10.35931/aq.v17i5.2744

Vombatkere, K., Mousavi, S., Zannettou, S., Roesner, F., & Gummadi, K. P. (2024). TikTok and the Art of Personalization: Investigating Exploration and Exploitation on Social Media Feeds. Proceedings of the ACM Web Conference, 3789–3797. https://doi.org/10.1145/3589334.3645600

Yin, J. (2025). From Connection to Isolation : The Role of TikTok Algorithmic Personalization in Computational Media and Cross-cultural Communication. 0, 44–52. https://doi.org/10.54254/2753-7064/61/2025.20620

Zhang, M., & Liu, Y. (2021). A commentary of TikTok recommendation algorithms in MIT Technology Review 2021. Fundamental Research, 1(6), 846–847. https://doi.org/10.1016/j.fmre.2021.11.015

Zhao, X., & Wong, C.-W. (2024). TikTok Engagement Traces Over Time and Health Risky Behaviors: Combining Data Linkage and Computational Methods. 1–16. http://arxiv.org/abs/2406.15991

Zhao, Z. (2021). Analysis on the douyin (Tiktok) Mania Phenomenon Based on Recommendation Algorithms. E3S Web of Conferences, 235. https://doi.org/10.1051/e3sconf/202123503029

Zhou, R. (2024). Understanding the Impact of TikTok ’ s Recommendation. International Journal of Computer Science and Information Technology, 3(2), 5–60.

Downloads

Published

2025-05-31

How to Cite

Muhamad Nur Fitrianto. (2025). Analisis Pengaruh Algoritma Rekomendasi TikTok terhadap Perilaku Konsumsi Konten Menggunakan Metode Data Mining dan Machine Learning. Jurnal Publikasi Teknik Informatika, 4(2), 68–75. https://doi.org/10.55606/jupti.v4i2.4225