Deteksi Pelanggaran Lalu Lintas di Jalan Tol Menggunakan Framework YOLO dan Kalman Filter
DOI:
https://doi.org/10.55606/jupti.v4i2.5204Keywords:
Detection System, Kalman Filter, Smart Transportation, Traffic Violations, YOLOAbstract
Traffic violations, such as exceeding the speed limit and inappropriate lane usage, are among the main factors causing accidents and congestion on toll roads. To improve traffic safety and efficiency, an automated monitoring system capable of detecting and analyzing violations quickly and accurately is needed. This research aims to develop and evaluate a detection system for speed limit violations and lane misuse by heavy vehicles using deep learning-based object recognition and tracking technology. The method used is the YOLO (You Only Look Once) framework for object detection and the Kalman Filter to track vehicle movement between frames, thereby refining position and speed estimates. The research data was obtained from CCTV video recordings installed along the toll road. The developed system is capable of detecting vehicles, calculating speed based on the shift between frames, and analyzing vehicle position in relation to lane usage regulations. The model evaluation results demonstrated quite good performance with an accuracy of 83.97%, a precision of 0.702, a recall of 0.757, and an F1 score of 0.758. The combination of YOLO and the Kalman Filter proved effective in detecting and tracking vehicles in real time, with adequate accuracy and efficient processing speed. This study concludes that a deep learning-based system can be an innovative solution to support automated traffic monitoring on toll roads. Implementing such a system has the potential to help reduce traffic violations, prevent accidents, and improve driving safety. Furthermore, this study provides recommendations for further development for integration with intelligent transportation technology to support more adaptive and sustainable traffic management.
References
Ahmed, M., Khan, J., & Liu, X. (2024). Real-time object detection in complex traffic scenes using YOLOv7. International Journal of Computer Vision and Intelligent Systems, 12(1), 44–59. https://doi.org/10.1007/s11263-024-01124-y
Diwan, A., Kumar, V., & Gupta, P. (2023). A comprehensive review on YOLO variants for object detection. International Journal of Artificial Intelligence and Data Science, 4(2), 100–118. https://doi.org/10.1016/j.ijartid.2023.05.005
Febrian, A., Heriansyah, R., & Romegar, Z. (2025). Deteksi pelanggaran lalu lintas pengendara sepeda motor menggunakan framework You Only Look Once (YOLO). [Artikel ilmiah, belum tersedia nama jurnal/doi].
Heriansyah, R., Verano, D. A., & Mair, Z. R. (2024). Deteksi penyakit diabetes retinopathy menggunakan citra digital dengan metode convolutional neural network (CNN). Prosiding SNAST, 311–320. https://doi.org/10.34151/prosidingsnast.v1i1.5120
Mair, Z. R. (2024). Convolutional neural network analysis on handwriting patterns and its relationship to personality: A systematical review. Journal of Artificial Intelligence Research and Applications, 8(2), 145–162.
Mair, Z. R., & Irfani, M. H. (2023). Permainan INGBAS (gunting, batu, kertas) menggunakan arsitektur convolutional neural network. Jurnal Teknik Informatika dan Sistem Informasi, 10(1), 1019–1026.
Mair, Z. R., & Rahmanda, M. A. (2025). Perbandingan versi terbaik YOLO dalam mendeteksi jarak spasi antar baris tulisan tangan. Jurnal Sains, Nalar, dan Aplikasi Teknologi Informasi, 4(2), 103–110. https://doi.org/10.20885/snati.v4.i2.40414
Pasemah, M. H. (2021). Balancing robot dengan sistem kendali proporsional integral derivatif (PID) dan Kalman filter. [Tugas akhir].
Putri, R. N. (2020). Perilaku pengemudi dan kecelakaan di jalan tol: Kajian empiris. Jurnal Transportasi dan Keselamatan, 5(2), 101–110. https://doi.org/10.21043/jtk.v5i2.11234
Rahmawati, R., & Adi, D. (2017). Penerapan Kalman filter pada sistem pelacakan objek bergerak. Jurnal Teknologi dan Sistem Komputer, 5(3), 423–430. https://doi.org/10.14710/jtsiskom.5.3.423-430
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 779–788). IEEE. https://doi.org/10.1109/CVPR.2016.91
Saputra, A. (2024). Prediction passenger numbers in light rail transit using seasonal autoregressive integrated moving average (SARIMA). Przegląd Elektrotechniczny, 1(10), 45–47. https://doi.org/10.15199/48.2024.10.07
Sri Bintan, M. (2025). Efektivitas CCTV dalam pengawasan lalu lintas di Jalan Tol Trans Sumatera. Jurnal Sistem Transportasi Indonesia, 6(1), 1–10.
Sudirman, H. (2014). Pengembangan infrastruktur jalan tol dan dampaknya terhadap perekonomian wilayah. Jurnal Infrastruktur dan Transportasi, 2(1), 25–38. https://doi.org/10.14710/jit.2.1.25-38
Wicaksono, R., Prasetyo, D., & Nugroho, S. (2020). Review Kalman filter dalam sistem deteksi dan pelacakan objek. Jurnal Teknologi dan Informasi, 11(1), 22–30. https://doi.org/10.4710/jti.11.1.22-30
Zhandy, Z., Tungadi, E., & Raharjo, M. F. (2023). Aplikasi monitoring pelanggaran lalu lintas di jalan tol menggunakan YOLOv5. Jurnal Teknologi dan Sistem Komputer, 11(2), 65–72. https://doi.org/10.14710/jtsiskom.11.2.65-72
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Publikasi Teknik Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.