Pengenalan Gerakan Tangan untuk Kontrol Slide Presentasi Menggunakan Framework Mediapipe, OpenCV, dan Model LSTM

Authors

  • Muhammad Rizaldi Universitas Indo Global Mandiri
  • Rudi Heriansyah Universitas Indo Global Mandiri
  • Nazori Suhandi Universitas Indo Global Mandiri

DOI:

https://doi.org/10.55606/jupti.v4i3.5332

Keywords:

LSTM, MediaPipe, OpenCV, Recognition Gesture, Slide Control

Abstract

In presentation activities, the use of physical devices such as a mouse or remote often limits the presenter’s mobility and reduces the effectiveness of interaction with the audience. This study aims to implement a hand gesture recognition system as an alternative solution to control presentation slides in real-time without additional devices. The system was developed using the MediaPipe framework for hand landmark detection, OpenCV for video image processing, and a Long Short-Term Memory (LSTM) model for sequential gesture classification. Three main gestures were defined as commands, namely “Next,” “Previous,” and “Idle,” with input taken from live video streaming at a distance of 1–3 meters.The development process included manual labeling of gesture data from multiple users, training the LSTM model with sequential data, and testing the system in real-time integrated with Microsoft PowerPoint. Experimental results indicate that the system successfully recognized hand gestures with high accuracy across most scenarios, with optimal performance observed at distances of 1–2 meters. However, accuracy decreased under low-light conditions or when gestures were performed too quickly.These findings demonstrate that the combination of MediaPipe, OpenCV, and LSTM is effective in building a gesture-based presentation control system. Beyond enhancing flexibility and interactivity in presentations, this research also contributes to the development of more natural and practical human–computer interaction systems, while offering opportunities for broader applications in other domains

References

Amanda Muchsin Chalik, Bilal Abdul Qowy, Faiz Hanafi, & Ahlijati Nuraminah. (2021). Mouse tracking tangan dengan klasifikasi gestur menggunakan OpenCV dan MediaPipe. Jurnal Ilmiah Teknik Informatika Dan Komunikasi, 1(2), 10-18. https://doi.org/10.55606/juitik.v1i2.323

Arif, M., Haryono, G. S., Arsyad, N. F., Ramadhani, R., Sahid, A., Rosyani, P., Kunci, K., Tangan, P., Gerakan, P., & Manusia-Komputer, I. (2024). Teknik dan multimedia sistem pendeteksi tangan berbasis MediaPipe dan OpenCV untuk pengenalan gerakan. Biner: Jurnal Ilmu Komputer, 2(2), 173-177.

Asmara, G. I., Erdina, N., & Ariza, R. A. (2021). Urgensi pertemuan dan presentasi dalam organisasi bisnis. Da'watuna: Journal of Communication and Islamic Broadcasting, 1(2), 109-119. https://doi.org/10.47467/dawatuna.v1i2.487

Fakhruddin, M. A., Pratikno, H., & Kusumawati, W. I. (2019). Kontrol level kecepatan kipas melalui deteksi gestur jari tangan menggunakan MediaPipe dan Faster-RCNN. Jurnal Teknologi Informasi Dan Ilmu Komputer. https://doi.org/10.25126/jtiik.2023107345

Gustriansyah, R., Puspasari, S., Sanmorino, A., Suhandi, N., & Sartika, D. (2025). Tree-based models and hyperparameter optimization for assessing employee performance. Indonesian Journal of Electrical Engineering and Computer Science, 38(1), 569-577. https://doi.org/10.11591/ijeecs.v38.i1.pp569-577

Heriansyah, R., & Utomo, W. M. (2021). Performance evaluation of digital image processing by using Scilab. JUITA: Jurnal Informatika, 9(2), 239-247. https://doi.org/10.30595/juita.v9i2.8434

Husna Moetia Putri, Fadlisyah, & Wahyu Fuadi. (2022). Pendeteksian bahasa isyarat Indonesia secara real-time menggunakan Long Short-Term Memory (LSTM).

Irviantina, S., Wijaya, D. A., Situmorang, D. R., & Nasution, N. M. J. (2024). Deteksi bahasa isyarat berdasarkan abjad menggunakan metode LSTM (Long Short Term Memory). Majalah Ilmiah METHODA, 14(3), 371-376. https://doi.org/10.46880/methoda.Vol14No3.pp371-376

Juliansyah, M. A., Terttiaavini, Heryati, A., & Sanmorino, A. (2025). Evaluasi kinerja portal new student UIGM berdasarkan perspektif mahasiswa menggunakan metode use questionnaire dan importance performance analysis (IPA). Jurnal Ilmiah Informatika Global, 16(2), 98-107. https://doi.org/10.36982/jiig.v16i2.5416

Khairianto, D., & Firdaus, R. (2024a). Penerapan hand gesture recognition sebagai media kontrol presentasi aplikasi PowerPoint. JATI: Jurnal Mahasiswa Teknik Informatika, 8(2), 1852-1860. https://doi.org/10.36040/jati.v8i2.9167

Khairianto, D., & Firdaus, R. (2024b). Penerapan hand gesture recognition sebagai media kontrol presentasi aplikasi Powerpoint. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), 1852-1860. https://doi.org/10.36040/jati.v8i2.9167

Maulana, A., Auliatunnajah, F., Rosidin, N., Ramadien Rizki Darmawan, M., & Rosyani, P. (2024). Implementasi OpenCV dengan metode image thresholding pada gambar. Jurnal Artificial Inteligent Dan Sistem Penunjang Keputusan, 2(1), 27-32.

Nor, S., Muslim, M. A., & Aswin, M. (2022). Pengenalan pola dasar angka berdasarkan gerakan tangan menggunakan machine learning. Elkomika, 10(3), 596-608. https://doi.org/10.26760/elkomika.v10i3.596

Prananta, G. B., Azzikri, H. A., & Rozikin, C. (2023). Deteksi dan pengenalan gesture tangan secara real-time menggunakan jaringan saraf tiruan konvolusional. Methodika, 9(2), 30-34. https://doi.org/10.46880/mtk.v9i2.1911

Puspasari, S., Suhandi, N., & Iman, J. N. (2021). Evaluation of augmented reality application development for cultural artefact education. International Journal of Computing, 20(2). https://doi.org/10.47839/ijc.20.2.2171

Sruthi, S., & Swetha, S. (2023). Hand gesture controlled presentation using OpenCV and MediaPipe. International Journal of Engineering Technology & Management Sciences, 7(4), 338-341. https://doi.org/10.46647/ijetms.2023.v07i04.046

Wibowo, A. D. A., & Heriansyah, R. (2014). Automated vehicle monitoring system. 1st International Conference on Computer Science and Engineering (ICON-CSE 2014).

Wibowo, A. D. A., & Heriansyah, R. (2021). Real-time vehicle surveillance system based on image processing and short message service. JUITA: Jurnal Informatika, 9(2), 249-257. https://doi.org/10.30595/juita.v9i2.8728

Zebua, E. T. P., & Rosyani, P. (2024). Perancangan deteksi objek kendaraan bermotor berbasis OpenCV Python menggunakan metode HOG-SVM untuk analisis lalu lintas cerdas. Jurnal AI Dan SPK: Jurnal Artificial Inteligent Dan Sistem Penunjang Keputusan, 2(1), 16-26.

Downloads

Published

2025-09-08

How to Cite

Muhammad Rizaldi, Rudi Heriansyah, & Nazori Suhandi. (2025). Pengenalan Gerakan Tangan untuk Kontrol Slide Presentasi Menggunakan Framework Mediapipe, OpenCV, dan Model LSTM. Jurnal Publikasi Teknik Informatika, 4(3), 98–111. https://doi.org/10.55606/jupti.v4i3.5332