Penerapan Metode PCA dan Apriori dalam Deteksi Pola Penggunaan Internet Dikalangan Mahasiswa
DOI:
https://doi.org/10.55606/jupti.v5i1.6207Keywords:
Apriori, Association Rules, Data Mining, Internet Behavior, PCAAbstract
University students generate extensive digital footprints that form complex, high-dimensional datasets reflecting diverse patterns of online behavior. Understanding these patterns requires analytical methods capable of handling large and interrelated variables. This study aims to map internet usage trends among university students using an integrated approach that combines Principal Component Analysis (PCA) and the Apriori Algorithm. PCA is employed to reduce data dimensionality by identifying the most influential components and eliminating redundant information, thereby simplifying the dataset without losing essential characteristics. Subsequently, the Apriori Algorithm is applied to uncover association rules that describe relationships between different types of digital activities. Data were collected through structured questionnaires distributed to active university students, capturing various aspects of their internet usage behavior. Through this combined methodology, the study seeks to identify the main factors that shape students’ digital habits and to reveal hidden behavioral patterns that may not be evident through conventional analysis. The expected results will provide a clearer understanding of how students interact with digital platforms and online resources. Ultimately, the findings are intended to serve as an empirical basis for designing more effective, data-driven digital literacy programs and strategies in higher education environments.
References
Ahmad, H. I., Sim, A. T. H., Shah, S. M. A., Abrar, M., & Gul, A. (2021). Mining predicate rules without minimum support threshold. Kuwait Journal of Science, 48(4). https://doi.org/10.48129/kjs.v48i4.9782
Alias, M. A. H., Aziz, M. A. A., Hambali, N., & Taib, M. N. (2024). Student performance classification: A comparison of feature selection methods based on online learning activities. International Journal of Electrical and Computer Engineering, 14(4), 4675–4685. https://doi.org/10.11591/ijece.v14i4.pp4675-4685
Babitha, B. S., Behera, S., & Sharma, M. K. (2024). Applying association rule mining to understand customer buying behaviour. In Proceedings of the International Conference on Computing, Communication and Networking Technologies. https://doi.org/10.1109/icccnt61001.2024.10725121
Barun, M. N., & Önder, E. (2024). Unlocking the multidisciplinary potential of data science: Insights from Apriori analysis. Politeknik Dergisi. https://doi.org/10.2339/politeknik.1432158
Gao, T. (2021). How social media “reverse domesticate” and “make the best use of everything” from students’ academic achievement. In E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202125303084
Hikmawati, E., Maulidevi, N. U., & Surendro, K. (2021). Minimum threshold determination method based on dataset characteristics in association rule mining. Journal of Big Data, 8, Article 138. https://doi.org/10.1186/s40537-021-00538-3
Kumar, N., Jain, S., & Bhargava, L. (2023). To study the impact of screen time on IT job professionals in India. Journal of Community Health Management. https://doi.org/10.18231/j.jchm.2023.024
Limbong, L., Suhud, U., & Wibowo, A. U. A. (2025). Analysis of factors affecting internet consumption among upper secondary students. In Proceedings of the International Student Conference on Business, Education, Economics, Accounting, and Management. https://doi.org/10.21009/isc-beam.013.133
Liu, J. (2022). A direct method to calculate characteristic forms. Partial Differential Equations in Applied Mathematics, 6, Article 100308. https://doi.org/10.1016/j.padiff.2022.100308
Lukianova, L., Symela, K., & Ovcharuk, O. V. (2024). Exploring the potential of online scientific research to meet modern needs: International perspective. Naukovi Zapysky Maloi Akademii Nauk Ukrainy. https://doi.org/10.51707/2618-0529-2024-30-13
Market basket analysis (association rule mining). (2022). In Pro Apache Spark. https://doi.org/10.1007/978-1-4842-8954-9_2
Martín, A., Fernández-Isabel, A., Martín de Diego, I., & Beltrán, M. (2021). A survey for user behavior analysis based on machine learning techniques: Current models and applications. Applied Intelligence, 51, 640–665. https://doi.org/10.1007/s10489-020-02160-x
Meena, R. E., Kavitha, T., S., A., Mathew, D. M., & Anusuya, R. (2023, January 5). Extracting behavioral characteristics of college students using data mining on big data. In Proceedings of the International Conference on Electronics and Communication Systems. https://doi.org/10.1109/ICECONF57129.2023.10084276
Nurputra, W. R., Witanti, W., & Komarudin, A. (2025). Principal component analysis (PCA) untuk meningkatkan hasil klasterisasi penjualan video game menggunakan algoritma K-means. Jurnal Locus Penelitian dan Pengabdian, 4(8). https://doi.org/10.58344/locus.v4i8.4151
Ramasubramanian, S., C. N., S., Athreya, A. J., Devarajan, A., Shankar, A., & Kumar, R. P. (2024). Data dimensionality reduction using principal component analysis: A case study. In Proceedings of the International Conference on Communication, Computing and Signal Processing. https://doi.org/10.1109/incccs60947.2024.10593421
Sangotra, D. I., Vasundhara, S., Kaur, R., Srivastava, A., & Sambathkumar, M. (2025). Digital innovation in higher educational system. In Advances in Computational Intelligence and Robotics (Book series). https://doi.org/10.4018/979-8-3373-0035-1.ch011
Saputra, H., Uneputty, R. A., Simyapen, L. A., Mustamir, M. F. B., Ikawanti, F. A., & Kusumawati, S. P. (2025). Analisis pola kegiatan belajar mahasiswa terhadap keberhasilan akademik menggunakan algoritma Apriori. Deleted Journal. https://doi.org/10.62357/jsit.v4i2.567
Taleb, N. N., Zalloua, P., Elbassioni, K., Henschel, A., & Platt, D. E. (2023). Informational rescaling of PCA maps with application to genetic distance. arXiv. https://doi.org/10.48550/arXiv.2303.12654
Yata, K., & Aoshima, M. (2022). Automatic sparse PCA for high-dimensional data. Statistica Sinica, 32(4). https://doi.org/10.5705/ss.202022.0319
Zhou, Y., & Deng, L. (2024). Lost in multitasking: An exploration of Chinese university students’ in-class smartphone multitasking patterns using multiple approaches. Australasian Journal of Educational Technology. https://doi.org/10.14742/ajet.8941
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jurnal Publikasi Teknik Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





