Optimasi Artificial Neural Network untuk Klasifikasi Gaya Belajar Mahasiswa Menggunakan Model Visual, Auditori, dan Kinestetik (VAK)
DOI:
https://doi.org/10.55606/jupti.v5i1.6311Keywords:
Artificial Neural Network, Hyperparameter Optimization, Learning Style Classification, Regularization, VAK ModelAbstract
This study proposes an optimized Artificial Neural Network (ANN) framework for the automatic classification of student learning styles based on the Visual, Auditory, and Kinesthetic (VAK) model to support educational personalization. The system utilizes data from a 36-item questionnaire, which are preprocessed using z-score standardization and encoded into numerical features. Several ANN configurations were evaluated to examine the influence of network depth, activation functions, regularization strength (λ ranging from 1 × 10⁻⁴ to 1 × 10⁻²), and the number of training iterations between 500 and 2000. Model training employed the Adam optimizer combined with early stopping to ensure stable and efficient convergence. The results demonstrate that proper data standardization and suitable regularization significantly enhance model generalization and training stability. The optimal model consists of two hidden layers with 64 and 32 neurons using ReLU activation and λ = 1 × 10⁻², achieving an accuracy of 91.9% and a macro-F1 score of 0.908. Overall, systematic hyperparameter optimization improves the robustness and reliability of ANN-based learning style classification for adaptive learning systems.
References
Al-Badarenah, A., & Alsakran, J. (2020). An automated learning style detection method using neural networks. International Journal of Advanced Computer Science and Applications, 11(1), 1–8. https://doi.org/10.14569/IJACSA.2020.0110101
Andari, E. (2022). Implementasi kurikulum Merdeka Belajar menggunakan learning management system (LMS). Allimna: Jurnal Pendidikan Profesi Guru, 1(2), 65–79. https://doi.org/10.30762/allimna.v1i2.694
Bai, Y., Yang, E., Han, B., Yang, Y., Li, J., Mao, Y., Niu, G., & Liu, T. (2021). Understanding and improving early stopping for learning with noisy labels. Neurocomputing. https://doi.org/10.48550/arXiv.2106.15853
Castillo, A., Morales, R., & Perez, J. (2020). Learning style classification using artificial neural networks. In Proceedings of the IEEE Global Engineering Education Conference (EDUCON) (pp. 1–6). https://doi.org/10.1109/EDUCON45650.2020.9125166
Chen, C. M., & Li, Y. L. (2020). Personalized e-learning system based on learner’s learning style. Computers & Education, 146, 103771. https://doi.org/10.1016/j.compedu.2009.08.021
Drachsler, H., & Greller, W. (2020). Privacy and analytics – It’s a DELICATE issue. In Proceedings of the 10th International Conference on Learning Analytics & Knowledge (pp. 89–98). https://doi.org/10.1145/3375462.3375503
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. https://doi.org/10.7551/mitpress/10243.001.0001
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV). https://doi.org/10.1109/ICCV.2015.123
Hinojosa Lee, M. C., Braet, J., & Springael, J. (2024). Performance metrics for multilabel emotion classification: Comparing micro, macro, and weighted F1-scores. Applied Sciences, 14(21), 9863. https://doi.org/10.3390/app14219863
Huang, S., Fang, N., & Fang, X. (2021). Student learning behavior modeling using learning analytics. IEEE Access, 9, 138248–138258. https://doi.org/10.1109/ACCESS.2021.3052679
Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning (pp. 448–456). https://doi.org/10.48550/arXiv.1502.03167
Karamouzis, S., & Vrettaros, J. (2021). Learning style classification using machine learning algorithms. Education and Information Technologies, 26(3), 3435–3456. https://doi.org/10.1007/s10639-020-10404-9
Kim, Y. S., Kim, M. K., Fu, N., Liu, J., Wang, J., & Srebric, J. (2024). Investigating the impact of data normalization methods on predicting electricity consumption using artificial neural networks. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2024.105570
Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations. https://doi.org/10.48550/arXiv.1412.6980
Knoll, A. R., Otani, H., Skeel, R. L., & Van Horn, K. R. (2021). Learning style, judgments, and performance. Educational Psychology, 41(2), 1–15. https://doi.org/10.1080/01443410.2020.1830848
Li, Y., Chen, B., & Huang, R. (2021). Deep learning for adaptive learning systems: A survey. IEEE Access, 9, 157113–157130. https://doi.org/10.1109/ACCESS.2021.3120125
Liao, S. H., Chu, P. H., & Hsiao, P. Y. (2012). Data mining techniques and applications – A decade review. Expert Systems with Applications, 39(12), 11303–11311. https://doi.org/10.1016/j.eswa.2012.02.057
Papamitsiou, Z., & Economides, A. A. (2020). Learning analytics and educational data mining: Towards a framework for learning design. Educational Technology & Society, 23(1), 1–15.
Rogowsky, B. A., Calhoun, B. M., & Tallal, P. (2020). Matching learning style to instructional method: Revisited. Educational Psychology Review, 32(3), 709–734. https://doi.org/10.1007/s10648-019-09489-7
Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/10.1002/widm.1355
Shen, S., Huang, Z., Chen, Q., & Li, Y. (2024). A survey of knowledge tracing: Models, variants, and applications. IEEE Transactions on Learning Technologies, 17(1), 1–18. https://doi.org/10.1109/TLT.2023.3332157
Siemens, G., Gašević, D., Dawson, S., & Baker, R. S. (2022). Learning analytics and educational data mining: Towards communication and collaboration. In Proceedings of the 12th International Conference on Learning Analytics & Knowledge (pp. 1–5). https://doi.org/10.1145/3506860.3506863
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929–1958.
Uddin, M. F., & Kar, A. K. (2020). Student learning style detection using artificial neural networks. In Proceedings of the IEEE International Conference on Emerging Technologies (ICET) (pp. 1–6). https://doi.org/10.1109/ICET51153.2020.9276562
Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2020). The current landscape of learning analytics in higher education. Computers in Human Behavior, 107, 105945. https://doi.org/10.1016/j.chb.2019.105945
Wang, S., Liu, Y., & Chen, H. (2025). Large language models for education: A survey and outlook. IEEE Access, 13, 1421–1445. https://doi.org/10.1109/ACCESS.2024.3509217
Xu, H., Zhang, Y., & Li, X. (2024). Large language models for education: A survey. IEEE Access, 12, 55910–55936. https://doi.org/10.1109/ACCESS.2024.3387261
Zanellati, A., Di Mitri, D., Gabbrielli, M., & Levrini, O. (2024). Hybrid models for knowledge tracing: A systematic literature review. IEEE Transactions on Learning Technologies, 17(2), 210–225. https://doi.org/10.1109/TLT.2023.3341129
Zhang, H., Huang, T., Liu, S., et al. (2020). Learning style classification using deep neural networks. Journal of Cloud Computing, 9, 26. https://doi.org/10.1186/s13677-020-00165-y
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jurnal Publikasi Teknik Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





