Optimasi Artificial Neural Network untuk Klasifikasi Gaya Belajar Mahasiswa Menggunakan Model Visual, Auditori, dan Kinestetik (VAK)

Authors

  • Agung Wicakono Telkom University Purwokerto
  • Zein Hani Pradana Telkom University Purwokerto
  • Prasetyo Yuliantoro Telkom University Purwokerto
  • Hasri Wulan Nugraheni Telkom University Purwokerto

DOI:

https://doi.org/10.55606/jupti.v5i1.6311

Keywords:

Artificial Neural Network, Hyperparameter Optimization, Learning Style Classification, Regularization, VAK Model

Abstract

This study proposes an optimized Artificial Neural Network (ANN) framework for the automatic classification of student learning styles based on the Visual, Auditory, and Kinesthetic (VAK) model to support educational personalization. The system utilizes data from a 36-item questionnaire, which are preprocessed using z-score standardization and encoded into numerical features. Several ANN configurations were evaluated to examine the influence of network depth, activation functions, regularization strength (λ ranging from 1 × 10⁻⁴ to 1 × 10⁻²), and the number of training iterations between 500 and 2000. Model training employed the Adam optimizer combined with early stopping to ensure stable and efficient convergence. The results demonstrate that proper data standardization and suitable regularization significantly enhance model generalization and training stability. The optimal model consists of two hidden layers with 64 and 32 neurons using ReLU activation and λ = 1 × 10⁻², achieving an accuracy of 91.9% and a macro-F1 score of 0.908. Overall, systematic hyperparameter optimization improves the robustness and reliability of ANN-based learning style classification for adaptive learning systems.

References

Al-Badarenah, A., & Alsakran, J. (2020). An automated learning style detection method using neural networks. International Journal of Advanced Computer Science and Applications, 11(1), 1–8. https://doi.org/10.14569/IJACSA.2020.0110101

Andari, E. (2022). Implementasi kurikulum Merdeka Belajar menggunakan learning management system (LMS). Allimna: Jurnal Pendidikan Profesi Guru, 1(2), 65–79. https://doi.org/10.30762/allimna.v1i2.694

Bai, Y., Yang, E., Han, B., Yang, Y., Li, J., Mao, Y., Niu, G., & Liu, T. (2021). Understanding and improving early stopping for learning with noisy labels. Neurocomputing. https://doi.org/10.48550/arXiv.2106.15853

Castillo, A., Morales, R., & Perez, J. (2020). Learning style classification using artificial neural networks. In Proceedings of the IEEE Global Engineering Education Conference (EDUCON) (pp. 1–6). https://doi.org/10.1109/EDUCON45650.2020.9125166

Chen, C. M., & Li, Y. L. (2020). Personalized e-learning system based on learner’s learning style. Computers & Education, 146, 103771. https://doi.org/10.1016/j.compedu.2009.08.021

Drachsler, H., & Greller, W. (2020). Privacy and analytics – It’s a DELICATE issue. In Proceedings of the 10th International Conference on Learning Analytics & Knowledge (pp. 89–98). https://doi.org/10.1145/3375462.3375503

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. https://doi.org/10.7551/mitpress/10243.001.0001

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV). https://doi.org/10.1109/ICCV.2015.123

Hinojosa Lee, M. C., Braet, J., & Springael, J. (2024). Performance metrics for multilabel emotion classification: Comparing micro, macro, and weighted F1-scores. Applied Sciences, 14(21), 9863. https://doi.org/10.3390/app14219863

Huang, S., Fang, N., & Fang, X. (2021). Student learning behavior modeling using learning analytics. IEEE Access, 9, 138248–138258. https://doi.org/10.1109/ACCESS.2021.3052679

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning (pp. 448–456). https://doi.org/10.48550/arXiv.1502.03167

Karamouzis, S., & Vrettaros, J. (2021). Learning style classification using machine learning algorithms. Education and Information Technologies, 26(3), 3435–3456. https://doi.org/10.1007/s10639-020-10404-9

Kim, Y. S., Kim, M. K., Fu, N., Liu, J., Wang, J., & Srebric, J. (2024). Investigating the impact of data normalization methods on predicting electricity consumption using artificial neural networks. Sustainable Cities and Society. https://doi.org/10.1016/j.scs.2024.105570

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations. https://doi.org/10.48550/arXiv.1412.6980

Knoll, A. R., Otani, H., Skeel, R. L., & Van Horn, K. R. (2021). Learning style, judgments, and performance. Educational Psychology, 41(2), 1–15. https://doi.org/10.1080/01443410.2020.1830848

Li, Y., Chen, B., & Huang, R. (2021). Deep learning for adaptive learning systems: A survey. IEEE Access, 9, 157113–157130. https://doi.org/10.1109/ACCESS.2021.3120125

Liao, S. H., Chu, P. H., & Hsiao, P. Y. (2012). Data mining techniques and applications – A decade review. Expert Systems with Applications, 39(12), 11303–11311. https://doi.org/10.1016/j.eswa.2012.02.057

Papamitsiou, Z., & Economides, A. A. (2020). Learning analytics and educational data mining: Towards a framework for learning design. Educational Technology & Society, 23(1), 1–15.

Rogowsky, B. A., Calhoun, B. M., & Tallal, P. (2020). Matching learning style to instructional method: Revisited. Educational Psychology Review, 32(3), 709–734. https://doi.org/10.1007/s10648-019-09489-7

Romero, C., & Ventura, S. (2020). Educational data mining and learning analytics: An updated survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(3), e1355. https://doi.org/10.1002/widm.1355

Shen, S., Huang, Z., Chen, Q., & Li, Y. (2024). A survey of knowledge tracing: Models, variants, and applications. IEEE Transactions on Learning Technologies, 17(1), 1–18. https://doi.org/10.1109/TLT.2023.3332157

Siemens, G., Gašević, D., Dawson, S., & Baker, R. S. (2022). Learning analytics and educational data mining: Towards communication and collaboration. In Proceedings of the 12th International Conference on Learning Analytics & Knowledge (pp. 1–5). https://doi.org/10.1145/3506860.3506863

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15, 1929–1958.

Uddin, M. F., & Kar, A. K. (2020). Student learning style detection using artificial neural networks. In Proceedings of the IEEE International Conference on Emerging Technologies (ICET) (pp. 1–6). https://doi.org/10.1109/ICET51153.2020.9276562

Viberg, O., Hatakka, M., Bälter, O., & Mavroudi, A. (2020). The current landscape of learning analytics in higher education. Computers in Human Behavior, 107, 105945. https://doi.org/10.1016/j.chb.2019.105945

Wang, S., Liu, Y., & Chen, H. (2025). Large language models for education: A survey and outlook. IEEE Access, 13, 1421–1445. https://doi.org/10.1109/ACCESS.2024.3509217

Xu, H., Zhang, Y., & Li, X. (2024). Large language models for education: A survey. IEEE Access, 12, 55910–55936. https://doi.org/10.1109/ACCESS.2024.3387261

Zanellati, A., Di Mitri, D., Gabbrielli, M., & Levrini, O. (2024). Hybrid models for knowledge tracing: A systematic literature review. IEEE Transactions on Learning Technologies, 17(2), 210–225. https://doi.org/10.1109/TLT.2023.3341129

Zhang, H., Huang, T., Liu, S., et al. (2020). Learning style classification using deep neural networks. Journal of Cloud Computing, 9, 26. https://doi.org/10.1186/s13677-020-00165-y

Downloads

Published

2026-01-17

How to Cite

Agung Wicakono, Zein Hani Pradana, Prasetyo Yuliantoro, & Hasri Wulan Nugraheni. (2026). Optimasi Artificial Neural Network untuk Klasifikasi Gaya Belajar Mahasiswa Menggunakan Model Visual, Auditori, dan Kinestetik (VAK). Jurnal Publikasi Teknik Informatika, 5(1), 87–100. https://doi.org/10.55606/jupti.v5i1.6311