Perancangan Prosthetic Hand Berbasis ESP32 dengan Sistem Kendali Nirkabel Real-Time untuk Penyandang Tunadaksa

ESP32-Based Prosthetic Hand Design with Real-Time Wireless Control System for the Physically Disabled

Authors

  • Sri Lestari Telkom University
  • Indah Permatasari Telkom University
  • Fena Nur Mustika Telkom University
  • Maulidya Fitria Zahrah Telkom University
  • Irmayatul Hikmah Telkom University

DOI:

https://doi.org/10.55606/jupti.v5i1.6327

Keywords:

ESP32, Hall Effect Linear Sensor, Physical Disabilities, Prosthetic Hand, Quality of Service

Abstract

Individuals with physical disabilities, particularly those with impaired hand function, require assistive devices that can support daily activities independently. However, the development of prosthetic hands is often constrained by high costs, complex control systems, and limited accessibility of affordable technology. This study aims to design and implement an ESP32-based prosthetic hand with a real-time wireless control system that is simple, stable, and cost-effective. The proposed system employs an ESP32 and Arduino Uno as controllers, a hall effect linear sensor integrated in an electric bicycle throttle as the control input, and servo motors as finger actuators. System performance was evaluated through servo angle accuracy tests, object grasping and lifting experiments, and Quality of Service (QoS) analysis of wireless communication using Wireshark. Experimental results indicate that the system accurately follows commanded servo angles, successfully grasps objects with diameters ranging from 5.5 cm to 12 cm, and lifts loads up to 500 ml at heights between 10 cm and 50 cm. QoS evaluation conducted over 19,150 seconds shows a throughput of 1,737.59 kbps, an average delay of 4.572 ms, jitter of 4.571 ms, and zero packet loss, demonstrating fast and stable real-time communication. These results confirm that the developed prosthetic hand is responsive and functional, and has strong potential for further development as an affordable IoT-based assistive technology for individuals with physical disabilities.

References

Azzahra, I. N., Zain, S. Z., Az-Zahra, A., Zahra, D. F., Pertiwi, A. D., & Kartika, W. I. (2025). Analisis kemampuan kognitif pada anak tuna daksa. Aulad: Journal on Early Childhood, 8(2), 697–705. https://doi.org/10.31004/aulad.v8i2.922

Borisov, I. I., Borisova, O. V., Krivosheev, S. V., Oleynik, R. V., & Reznikov, S. S. (2017). Prototyping of EMG-controlled prosthetic hand with sensory system. IFAC-PapersOnLine, 50(1), 16027–16031. https://doi.org/10.1016/j.ifacol.2017.08.1915

Febriani, I. (2018). Penerimaan diri pada remaja penyandang tuna daksa. Psikoborneo, 6(1), 150–157.

Jones, D., Wang, L., Ghanbari, A., Vardakastani, V., Kedgley, A. E., Gardiner, M. D., Vincent, T. L., Culmer, P. R., & Alazmani, A. (2020a). Design and evaluation of magnetic hall effect tactile sensors for use in sensorized splints. Sensors, 20(4), 1–13. https://doi.org/10.3390/s20041123

Jones, D., Wang, L., Ghanbari, A., Vardakastani, V., Kedgley, A. E., Gardiner, M. D., Vincent, T. L., Culmer, P. R., & Alazmani, A. (2020b). Design and evaluation of magnetic hall effect tactile sensors for use in sensorized splints. Sensors, 20(4). https://doi.org/10.3390/s20041123

Kim, J., Choi, S., Cho, K., & Nam, K. (2016). Position estimation using linear Hall sensors for permanent magnet linear motor systems. IEEE Transactions on Industrial Electronics, 63(12), 7644–7652. https://doi.org/10.1109/TIE.2016.2591899

Ngurah, I. G. L., Danudiningrat, A. P., Khoswanto, H., & Santoso, P. (2019). Kendali gerak prosthetic hand menggunakan flex sensors dan accelerometer. Jurnal Teknik Elektro, 12(1), 6–11.

Prambudi, G. E., Maulana, R., & Kurniawan, W. (2019). Implementasi sistem pengendali jari tangan robot dengan sensor flex menggunakan metode MAP. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(1), 291–300. http://j-ptiik.ub.ac.id

Saleh, K. P. Y., Ismail, R., & Ariyanto, M. (2022). Low cost mechanical prosthetic hand (Metic Hand) design for under elbow hand amputation patients. Jurnal Rotasi, 24(4), 26–32.

Siregar, L. A., Ananda, Y., Adha, A. M., & Iqbal, M. (2025). Rancang bangun lengan robot berbasis Arduino menggunakan sistem kontrol sensor giroskop. Journal of Electrical and System Control Engineering, 8(2), 201–206. https://doi.org/10.31289/jesce.v6i2.12986

Syarief, N. S., Pangestu, A. A., Putri, H. K., Filkhaqq, T. A., & Harjanti, G. Y. N. (2022). Karakteristik dan model pendidikan bagi anak tuna daksa. Edification Journal, 4(2), 275–285. https://doi.org/10.37092/ej.v4i2.337

Ulan, R. F. J., Nur’Aidha, A. C., Kumarajati, D. Y. H., Agisna, F., & Chaerunisa, S. T. (2024). Perancangan jari prostetik untuk penyandang tuna daksa berbasis sensor sentuh dan Arduino Uno. Scientific Journal of Mechanical Engineering Kinematika, 9(1), 1–11. https://doi.org/10.20527/sjmekinematika.v9i1.291

Wibowo, P., Bakti, P., & Supono, I. (2022). Sistem verifikasi medan magnet untuk sumber magnet kumparan sejajar. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, dan Teknik Elektronika, 10(2), 379–393. https://doi.org/10.26760/elkomika.v10i2.379

Wijaya, I. K. M., Wardana, I. W. R., & Budiarta, I. G. E. (2022). Rancangan ruang untuk rumah tinggal penyandang disabilitas tuna daksa. Jurnal Linears, 5(2), 43–51. https://doi.org/10.26618/j-linears.v5i2.8237

Winarto, B. W. T., & Puput, W. R. (2018). Rancang bangun sistem levitasi magnet menggunakan kontrol PID. Jurnal Teknik Elektro, 8(1), 63–70.

Downloads

Published

2026-01-19

How to Cite

Sri Lestari, Permatasari, I., Fena Nur Mustika, Maulidya Fitria Zahrah, & Irmayatul Hikmah. (2026). Perancangan Prosthetic Hand Berbasis ESP32 dengan Sistem Kendali Nirkabel Real-Time untuk Penyandang Tunadaksa : ESP32-Based Prosthetic Hand Design with Real-Time Wireless Control System for the Physically Disabled. Jurnal Publikasi Teknik Informatika, 5(1), 101–112. https://doi.org/10.55606/jupti.v5i1.6327