SISTEM REKOMENDASI DESTINASI WISATA DI KABUPATEN TIMOR TENGAH SELATAN MENGGUNAKAN METODE SOM (SELF ORGANIZING MAP)
DOI:
https://doi.org/10.55606/jupumi.v5i1.4659Keywords:
Destination, Recommendations, System, SOM, South Central Timor, TourismAbstract
The recommendation system for natural tourism destinations in South Central Timor Regency uses the Self-Organizing Map method. As an area with diverse natural tourism potential but has not been optimally explored, South Central Timor requires an innovative approach to increase the visibility of its tourist destinations. This website-based system integrates various important parameters such as natural characteristics, accessibility, facilities, tourist experience, temporal factors, costs, and sustainability aspects to produce personalized recommendations for tourists. The Self-Organizing Map method was chosen because of its ability to group tourist destinations based on similar characteristics without requiring previous data labels, and can identify hidden patterns that may not be visible in conventional analysis. The Final Project shows that the implementation of this recommendation system not only improves the tourist experience through personalization, but also encourages a more even distribution of visits to various tourist destinations in South Central Timor, supports the local economy, and promotes sustainable tourism practices. The development of the system in website format provides advantages in terms of accessibility, ease of content updates, rich multimedia integration, and optimization for search engines. This research makes a significant contribution to the development of technology-based tourism in areas with tourism potential that has not been maximally exposed.
References
Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749. [Internet]. [Diakses 10 Desember 2024].
Tersedia pada: https://ieeexplore.ieee.org/document/1423975
Burke, R. (2002). Hybrid recommender systems: Survey and experiments. ACM Transactions on Information Systems, 4(4), 378–408. [Internet]. [Diakses 10 Desember 2024]. Tersedia pada: https://dl.acm.org/doi/10.1145/780822.780831
Dewi. (2020). Potensi pariwisata alam di Kabupaten Timor Tengah Selatan. Jurnal Pariwisata Daerah, 12(2), 45–58. [Internet]. [Diakses 10 Desember 2024]. Tersedia pada: https://jurnalpariwisata.or.id/jpd/article/view/2020-12-2
Dinas Pariwisata TTS. (2020). Laporan data pariwisata Kabupaten Timor Tengah Selatan. Kabupaten Timor Tengah Selatan. [Internet]. [Diakses 16 Desember 2024]. Tersedia pada: https://pariwisata.ttskab.go.id/laporan-2020
Fauzan. (2022). Implementasi Self-Organizing Map dalam sistem rekomendasi destinasi wisata. Jurnal Teknologi Informasi, 15(3), 101–112. [Internet]. [Diakses 20 Februari 2025].
Tersedia pada: https://jti.or.id/index.php/jti/article/view/524
Herlocker, J. L., Konstan, J. A., & Riedl, J. (2002). An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Information Retrieval, 5(4), 287–310. [Internet]. [Diakses 20 Februari 2025]. Tersedia pada: https://link.springer.com/article/10.1023/A:1020443909834
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017). Neural collaborative filtering. Proceedings of the 26th International Conference on World Wide Web, 173–182. ACM. [Internet]. [Diakses 20 Februari 2025]. Tersedia pada: https://dl.acm.org/doi/10.1145/3038912.3052569
Kohonen, T. (2001). Self-organizing maps (3rd ed.). Springer-Verlag. [Internet]. [Diakses 20 Februari 2025].
Tersedia pada: https://link.springer.com/book/10.1007/978-3-642-56927-2
Lestari, S. (2023). Strategi promosi destinasi wisata kurang dikenal di wilayah Timur Indonesia. Jurnal Manajemen Pariwisata, 19(1), 87–99. [Internet]. [Diakses 25 Februari 2025].
Tersedia pada: https://jmp.or.id/index.php/jmp/article/view/2023-19-1
Nguyen, T. T., & Li, X. (2007). Mining user preferences for personalized recommendation in social networks. Journal of Systems and Software, 80(9), 1483–1491. [Internet]. [Diakses 25 Februari 2025]. Tersedia pada: https://www.sciencedirect.com/science/article/abs/pii/S0164121206001900
Pratama, A. (2022). Analisis tren kunjungan wisatawan domestik dan mancanegara di Nusa Tenggara Timur. Jurnal Ekonomi dan Pariwisata, 10(4), 234–248. [Internet]. [Diakses 25 Februari 2025].
Tersedia pada: https://jurnalekowisata.or.id/article/view/10-4-2022
Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender systems handbook (2nd ed.). Springer. [Internet]. [Diakses 25 Februari 2025]. Tersedia pada: https://link.springer.com/book/10.1007/978-1-4899-7637-6
Rossa, I. (2015). Studi pengelolaan destinasi wisata di Kabupaten Timor Tengah Selatan. Jurnal Pengembangan Wilayah, 8(3), 211–223. [Internet]. [Diakses 25 Februari 2025]. Tersedia pada: https://jpw.or.id/article/view/2015-8-3
Sammon, J. W. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, 18(5), 401–409. [Internet]. [Diakses 25 Februari 2025]. Tersedia pada: https://ieeexplore.ieee.org/document/52425
Setiawan, R. (2021). Penerapan teknologi dalam pariwisata untuk peningkatan ekonomi daerah. Jurnal Sistem Informasi, 14(2), 132–144. [Internet]. [Diakses 25 Februari 2025].
Tersedia pada: https://jurnalsisteminfo.or.id/article/view/2021-14-2
Zhang, Y., & Chen, X. (2018). Explainable recommendation: A survey and new perspectives. Journal of Machine Learning Research, 19(1), 1–42. [Internet]. [Diakses 25 Februari 2025].
Tersedia pada: https://www.jmlr.org/papers/volume19/17-716/17-716.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Jurnal Publikasi Manajemen Informatika

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.




