PEMANFAATAN MACHINE LEARNING UNTUK DETEKSI DAN KLASIFIKASI SINYAL FREKUENSI RADIO PENERBANGAN

Authors

  • Eka Oktavianto Stikom Uyelindo Kupang
  • Yohanes Suban Belutowe Stikom Uyelindo Kupang

DOI:

https://doi.org/10.55606/jupumi.v5i1.4952

Keywords:

Machine Learning, Radio Frequency Spectrum, Random Forest, Signal Classification, Support Vector Machine

Abstract

The radio frequency spectrum is a finite resource that plays a crucial role in supporting communication systems, particularly in the aviation sector. Unauthorized use and signal interference within this spectrum can pose serious threats to flight safety. This study aims to develop a classification system for aviation radio signals using machine learning algorithms, namely Random Forest and Support Vector Machine. The dataset consists of tabular monitoring data with two main features: frequency and signal power level. The research process includes data preprocessing, model training, validation through K-Fold Cross Validation, and performance evaluation based on accuracy, precision, recall, and F1-score metrics. Testing was carried out under both simulated and real-world conditions using Software Defined Radio (SDR) equipment. Results indicate that the Random Forest model achieved more consistent performance, with an accuracy of 79.77% and balanced F1-scores across both classes. Additionally, the system was found to be user-friendly and responsive, especially for non-technical operators, thanks to its intuitive visual interface. This research contributes to enhancing the effectiveness of aviation spectrum monitoring and offers potential for future integration with real-time detection systems

References

Azhari, A., & Rachmawati, A. (2022). Perbandingan Kinerja Algoritma Random Forest dan KNN dalam Klasifikasi Data Sensor. JINTEK: Jurnal Ilmu Pengetahuan dan Teknologi, 8(2), 130–136. https://jurnal.ustjogja.ac.id/index.php/jintek/article/view/367

Bhaskar, K. B., & Nandagopal, V. (2025). Comparative Analysis of SVM, RF and RL for Harmonic Mitigation. IEEE Third International Conference on Smart Systems and Inventive Technology (ICSSIT). https://ieeexplore.ieee.org/document/11042016

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324

Chen, Z., Cui, H., Xiang, J., Qiu, K., Huang, L., Zheng, S., Chen, S., Xuan, Q., & Yang, X. (2021). SigNet: A Novel Deep Learning Framework for Radio Signal Classification. arXiv preprint. https://arxiv.org/abs/2011.03525

Cheng, D., Fan, Y., Fang, S., Wang, M., & Liu, H. (2022). ResNet-AE for Radar Signal Anomaly Detection. Sensors, 22(6249). https://doi.org/10.3390/s22166249

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018

Direktorat Jenderal Infrastruktur Digital. (2024). Penegakan Sanksi untuk Penggunaan Spektrum Frekuensi Radio. Seputar SDPPI. https://sdppi.kominfo.go.id/berita-penegakan-sanksi-untuk-penggunaan-spektrum-frekuensi-radio-27-6167

International Civil Aviation Organization. (2023). ICAO Position for WRC-23. https://www.icao.int/Meetings/WRC-23/Pages/default.aspx

Kementerian Komunikasi dan Informatika Republik Indonesia. (2021). Peraturan Menteri Kominfo No. 7 Tahun 2021 tentang Penggunaan Spektrum Frekuensi Radio. https://jdih.kominfo.go.id

Nurhayati, W., Sudarmaji, & Siregar, G. Y. K. S. (2023). Implementasi Metode Waterfall pada Sistem Informasi Perpustakaan Online SMK Negeri 1 Seputih Agung. JIKI (Jurnal Ilmu Komputer dan Informatika), 4(2), 196–207. https://scholar.ummetro.ac.id/index.php/jiki/article/view/3118

Pamungkas, B., & Prihandoko, A. (2023). Klasifikasi Sinyal Radar Menggunakan SVM. Jurnal Teknologi dan Sistem Informasi, 6(1), 22–30. https://ejurnal.itenas.ac.id/index.php/JTSI/article/view/2467

Parenreng, J. M., Wahid, A., Sanatang, Y., & Yusmalasari, A. (2022). Pengantar Jaringan Komunikasi Nirkabel. Purwokerto: Zahira Media Publisher.

Prasetyo, Y. P. W. (2024). Simulasi Sistem Menggunakan Modulasi Digital 4-QAM, 8-QAM Melalui Kanal Fading. Rang Teknik Journal, 7(1), 44–51. http://jurnal.umsb.ac.id/index.php/RANGTEKNIKJOURNAL

Taha, B., & Shoufan, A. (2019). Machine Learning-Based Drone Detection and Classification: State-of-the-Art in Research. IEEE Access, 7, 138669–138682. https://doi.org/10.1109/ACCESS.2019.2942944

Taspinar, Y. S., & Sen, H. F. (2025). Obesity Prediction Using Machine Learning: RF Outperforms SVM. IEEE 7th International Conference on Innovation in AI (ICIAI). https://ieeexplore.ieee.org/document/11016848

Visuña, L., & Garcia-Blas, J. (2025). Detection of Latent Signals with Explainable RF Ensembles. IEEE 38th International Parallel and Distributed Processing Symposium (IPDPS). https://ieeexplore.ieee.org/document/11058705

Wahyuningtyas, V. (2021). Implementasi Ekstraksi Fitur untuk Klasifikasi Suara Urban Menggunakan Deep Learning. SAKTI – Sains, Aplikasi, Komputasi dan Teknologi Informasi, 3(1), 10–17. http://e-journals.unmul.ac.id/index.php/jsakti/

Zalukhu, A., Purba, S., & Darma, D. (2023). Perangkat Lunak Aplikasi Pembelajaran Flowchart. Jurnal Teknologi Informasi dan Industri, 4(1), 61–70. https://ejurnal.istp.ac.id/index.php/jtii/article/view/351

Downloads

Published

2026-01-17

How to Cite

Oktavianto, E., & Yohanes Suban Belutowe. (2026). PEMANFAATAN MACHINE LEARNING UNTUK DETEKSI DAN KLASIFIKASI SINYAL FREKUENSI RADIO PENERBANGAN. Jurnal Publikasi Manajemen Informatika, 5(1), 298–311. https://doi.org/10.55606/jupumi.v5i1.4952