Korelasi Lingkar Lengan Atas dan Lingkar Betis sebagai Prediktor Sarkopenia dengan Kadar IGF-1 pada Kelompok Lanjut Usia
DOI:
https://doi.org/10.55606/klinik.v4i2.4053Keywords:
Calf Circumference, Mid-Upper Arm Circumference, Older adults, SarcopeniaAbstract
Sarcopenia is a common condition among the elderly. Identifying individual risk factors associated with sarcopenia is essential for developing effective prevention strategies. This cross-sectional study aimed to investigate the association between insulin-like growth factor (IGF) levels and the incidence of sarcopenia, as assessed through mid-upper arm circumference and calf circumference, among older adults residing at Panti Werdha Bina Bhakti. Anthropometric measurements were obtained using a standard measuring tape, while IGF levels were measured through venous blood sampling and analyzed in a laboratory setting. Statistical analysis was performed using the Spearman correlation test. The study found that the average age of participants was 74.34 years, with 84.1% being female. The mean mid-upper arm circumference was 23.73 cm, and the mean calf circumference was 28.58 cm. The average IGF level was 14.43. Spearman’s rho analysis revealed a significant correlation between mid-upper arm and calf circumferences (r = 0.550; p < 0.001), as well as between mid-upper arm circumference and IGF levels (r = 0.237; p = 0.032). However, no significant correlation was observed between calf circumference and IGF levels (r = 0.176; p = 0.114). In conclusion, mid-upper arm circumference was significantly correlated with both calf circumference and IGF levels, whereas calf circumference showed no significant correlation with IGF in this elderly population.
Keywords: Calf Circumference, Mid-Upper Arm Circumference, Older adults, Sarcopenia
References
Rosenthal, N., Scicchitano, B. M., & Musarò, A. (2019). Effects of IGF‐1 isoforms on muscle growth and sarcopenia. Aging Cell, 18(3), e12954.
Bayraktar, E., Tosun Tasar, P., Binici, D. N., Karasahin, O., Timur, O., & Sahin, S. (2020). Relationship between sarcopenia and mortality in elderly inpatients. The Eurasian Journal of Medicine, 52(1), 298–303. https://doi.org/10.5152/eurasianjmed.2020.19214
Bian, A., Ma, Y., Zhou, X., Guo, Y., Wang, W., Zhang, Y., & Wang, X. (2020). Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC Musculoskeletal Disorders, 21(1), 214. https://doi.org/10.1186/s12891-020-03236-y
Brener, A., Sagi, L., Shtamler, A., Levy, S., Fattal-Valevski, A., & Lebenthal, Y. (2020). Insulin-like growth factor-1 status is associated with insulin resistance in young patients with spinal muscular atrophy. Neuromuscular Disorders, 30(11), 888–896. https://doi.org/10.1016/j.nmd.2020.09.025
Chen, H., Chung, Y., Chen, Y., Ho, S., & Wu, H. (2017). Effects of different types of exercise on body composition, muscle strength, and IGF‐1 in the elderly with sarcopenic obesity. Journal of the American Geriatrics Society, 65(4), 827–832.
Chen, L. Y., Wu, Y.-H., Liu, L.-K., Lee, W.-J., Hwang, A.-C., Peng, L.-N., Lin, M.-H., & Chen, L.-K. (2018). Association among serum insulin-like growth factor-1, frailty, muscle mass, bone mineral density, and physical performance among community-dwelling middle-aged and older adults in Taiwan. Rejuvenation Research, 21(3), 270–277. https://doi.org/10.1089/rej.2016.1882
Chen, L.-K., Lee, W.-J., Peng, L.-N., Liu, L.-K., Arai, H., & Akishita, M. (2016). Recent advances in sarcopenia research in Asia: 2016 update from the Asian Working Group for Sarcopenia. Journal of the American Medical Directors Association, 17(8), 767.e1–767.e7. https://doi.org/10.1016/j.jamda.2016.05.016
Chen, X., Hou, L., Zhang, Y., & Dong, B. (2021). Analysis of the prevalence of sarcopenia and its risk factors in the elderly in the Chengdu community. The Journal of Nutrition, Health and Aging, 25(5), 600–605. https://doi.org/10.1007/s12603-020-1559-1
Cruz-Jentoft, A. J., & Sayer, A. A. (2019). Sarcopenia. The Lancet, 393(10191), 2636–2646. https://doi.org/10.1016/S0140-6736(19)31138-9
Gellhaus, B., Böker, K. O., Schilling, A. F., & Saul, D. (2023). Therapeutic consequences of targeting the IGF-1/PI3K/AKT/FOXO3 axis in sarcopenia: A narrative review. Cells, 12(24), 2787. https://doi.org/10.3390/cells12242787
Goates, S., Du, K., Arensberg, M. B., Gaillard, T., Guralnik, J., & Pereira, S. L. (2019). Economic impact of hospitalizations in US adults with sarcopenia. The Journal of Frailty & Aging, 1–7. https://doi.org/10.14283/jfa.2019.10
Gupta, O. (2020). Sarcopenia: A review. Journal of Mahatma Gandhi Institute of Medical Sciences, 25(2), 62. https://doi.org/10.4103/jmgims.jmgims_80_20
Gyasi, R. M., & Phillips, D. R. (2020). Aging and the rising burden of noncommunicable diseases in Sub-Saharan Africa and other low- and middle-income countries: A call for holistic action. The Gerontologist, 60(5), 806–811. https://doi.org/10.1093/geront/gnz102
Gyasi, R. M., Phillips, D. R., & Buor, D. (2018). The role of a health protection scheme in health services utilization among community-dwelling older persons in Ghana. The Journals of Gerontology: Series B. https://doi.org/10.1093/geronb/gby082
Hata, R., Miyamoto, K., Abe, Y., Sasaki, T., Oguma, Y., Tajima, T., Arai, Y., Matsumoto, M., Nakamura, M., Kanaji, A., & Miyamoto, T. (2023). Osteoporosis and sarcopenia are associated with each other and reduced IGF1 levels are a risk for both diseases in the very old elderly. Bone, 166, 116570. https://doi.org/10.1016/j.bone.2022.116570
Hata, S., Mori, H., Yasuda, T., Irie, Y., Yamamoto, T., Umayahara, Y., Ryomoto, K., Yoshiuchi, K., Yoshida, S., Shimomura, I., Kuroda, A., & Matsuhisa, M. (2021). A low serum IGF-1 is correlated with sarcopenia in subjects with type 1 diabetes mellitus: Findings from a post-hoc analysis of the iDIAMOND study. Diabetes Research and Clinical Practice, 179, 108998. https://doi.org/10.1016/j.diabres.2021.108998
He, N., Zhang, Y., Zhang, L., Zhang, S., & Ye, H. (2021). Relationship between sarcopenia and cardiovascular diseases in the elderly: An overview. Frontiers in Cardiovascular Medicine, 8. https://doi.org/10.3389/fcvm.2021.743710
Jiang, J., Chen, S., Chen, J., Wu, L., Ye, J., & Zhang, Q. (2022). Serum IGF-1 levels are associated with sarcopenia in elderly men but not in elderly women. Aging Clinical and Experimental Research, 34(10), 2465–2471. https://doi.org/10.1007/s40520-022-02180-2
Kwak, J. Y., Hwang, H., Kim, S.-K., Choi, J. Y., Lee, S.-M., Bang, H., Kwon, E.-S., Lee, K.-P., Chung, S. G., & Kwon, K.-S. (2018). Prediction of sarcopenia using a combination of multiple serum biomarkers. Scientific Reports, 8(1), 8574. https://doi.org/10.1038/s41598-018-26617-9
Li, W., Zhao, C., Wang, G. Y., & Jiang, H. S. (2022). The expression and influencing factors of serum IGF-1 and IL-17 in elderly patients with chronic heart failure with different nutritional status. Practical Geriatrics, 36(1), 73–76. https://doi.org/10.3969/j.issn.1003-9198.2022.01.019
Liu, X., Hao, Q., Yue, J., Hou, L., Xia, X., Zhao, W., Zhang, Y., Ge, M., Ge, N., & Dong, B. (2020). Sarcopenia, obesity and sarcopenia obesity in comparison: Prevalence, metabolic profile, and key differences: Results from WCHAT study. The Journal of Nutrition, Health & Aging, 24(4), 429–437. https://doi.org/10.1007/s12603-020-1332-5
Margutti, K. M. de M., Schuch, N. J., & Schwanke, C. H. A. (2017). Inflammatory markers, sarcopenia and its diagnostic criteria among the elderly: A systematic review. Revista Brasileira de Geriatria e Gerontologia, 20(3), 441–453. https://doi.org/10.1590/1981-22562017020.160155
Mohamad, M. I., & Khater, M. S. (2015). Evaluation of insulin-like growth factor-1 (IGF-1) level and its impact on muscle and bone mineral density in frail elderly male. Archives of Gerontology and Geriatrics, 60(1), 124–127. https://doi.org/10.1016/j.archger.2014.08.011
Morley, J. E. (2017). Hormones and sarcopenia. Current Pharmaceutical Design, 23(30). https://doi.org/10.2174/1381612823666161123150032
Nasimi, N., Dabbaghmanesh, M. H., & Sohrabi, Z. (2019). Nutritional status and body fat mass: Determinants of sarcopenia in community-dwelling older adults. Experimental Gerontology, 122, 67–73. https://doi.org/10.1016/j.exger.2019.04.009
Papadopoulou, S. K., Voulgaridou, G., Kondyli, F. S., Drakaki, M., Sianidou, K., Andrianopoulou, R., Rodopaios, N., & Pritsa, A. (2022). Nutritional and nutrition-related biomarkers as prognostic factors of sarcopenia, and their role in disease progression. Diseases, 10(3), 42. https://doi.org/10.3390/diseases10030042
Priego, T., Martín, A. I., González-Hedström, D., Granado, M., & López-Calderón, A. (2021). Role of hormones in sarcopenia (pp. 535–570). https://doi.org/10.1016/bs.vh.2020.12.021
Seo, M.-W., Jung, S.-W., Kim, S.-W., Jung, H. C., Kim, D.-Y., & Song, J. K. (2020). Comparisons of muscle quality and muscle growth factor between sarcopenic and non-sarcopenic older women. International Journal of Environmental Research and Public Health, 17(18), 6581. https://doi.org/10.3390/ijerph17186581
Shafiee, G., Keshtkar, A., Soltani, A., Ahadi, Z., Larijani, B., & Heshmat, R. (2017). Prevalence of sarcopenia in the world: A systematic review and meta-analysis of general population studies. Journal of Diabetes & Metabolic Disorders, 16(1), 21. https://doi.org/10.1186/s40200-017-0302-x
Shimohata, H., Yamashita, M., Ohgi, K., Tsujimoto, R., Maruyama, H., Takayasu, M., Hirayama, K., & Kobayashi, M. (2019). Serum myokine (myostatin and IGF-1) measurement as predictors in hemodialysis patients. Renal Replacement Therapy, 5(1), 23. https://doi.org/10.1186/s41100-019-0222-y
Sun, Y.-S., Kao, T.-W., Chang, Y.-W., Fang, W.-H., Wang, C.-C., Wu, L.-W., Yang, H.-F., Liaw, F.-Y., & Chen, W.-L. (2017). Calf circumference as a novel tool for risk of disability of the elderly population. Scientific Reports, 7(1), 16359. https://doi.org/10.1038/s41598-017-16347-9
Ukegbu, P. O., Kruger, H. S., Meyer, J. D. C., Nienaber-Rousseau, Botha-Ravyse, C., Moss, S. J., & Kruger, M. I. (2018). The association between calf circumference and appendicular skeletal muscle mass index of black urban women in Tlokwe City. Journal of Endocrinology, Metabolism and Diabetes in South Africa, 23(3), 86–90.
van Nieuwpoort, I. C., Vlot, M. C., Schaap, L. A., Lips, P., & Drent, M. L. (2018). The relationship between serum IGF-1, handgrip strength, physical performance and falls in elderly men and women. European Journal of Endocrinology, 179(2), 73–84. https://doi.org/10.1530/EJE-18-0076
Walowski, C. O., Herpich, C., Enderle, J., Braun, W., Both, M., Hasler, M., Müller, M. J., Norman, K., & Bosy‐Westphal, A. (2023). Analysis of the adiponectin paradox in healthy older people. Journal of Cachexia, Sarcopenia and Muscle, 14(1), 270–278. https://doi.org/10.1002/jcsm.13127
Widajanti, N., Soelistijo, S., Hadi, U., Thaha, M., Aditiawardana, Widodo, Firdausi, H., Nurina, Y., Asikin, M., Srinowati, H., & Syakdiyah, N. (2022). Association between sarcopenia and insulin-like growth factor-1, myostatin, and insulin resistance in elderly patients undergoing hemodialysis. Journal of Aging Research, 2022, 1–7. https://doi.org/10.1155/2022/1327332
Wu, X., Li, X., Xu, M., Zhang, Z., He, L., & Li, Y. (2021). Sarcopenia prevalence and associated factors among older Chinese population: Findings from the China Health and Retirement Longitudinal Study. PLOS ONE, 16(3), e0247617. https://doi.org/10.1371/journal.pone.0247617
Xu, B., Guo, Z., Jiang, B., Zhang, K., Zhu, W., Lian, X., Xu, Y., Zhao, Z., & Liu, L. (2022). Factors affecting sarcopenia in older patients with chronic diseases. Annals of Palliative Medicine, 11(3), 972–983. https://doi.org/10.21037/apm-22-201
Ying, L., Zhang, Q., Yang, Y., & Zhou, J. (2022). A combination of serum biomarkers in elderly patients with sarcopenia: A cross-sectional observational study. International Journal of Endocrinology, 2022, 1–7. https://doi.org/10.1155/2022/4026940
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Kedokteran dan Kesehatan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.