Kajian Kimia Medisinal Ciprofloxacin: Mekanisme Kerja, Antibakteri, dan Pola Resistensi Bakteri

Authors

  • Saeful Amin Universitas Bakti Tunas Husada
  • Fuza Khoirun Nisa Universitas Bakti Tunas Husada
  • Yosi Setiawati Universitas Bakti Tunas Husada
  • Muhammad Akbar Alfi Fauzan Universitas Bakti Tunas Husada

DOI:

https://doi.org/10.55606/klinik.v4i2.3923

Keywords:

Ciprofloxacin, antibiotic, mechanism of action, bacterial resistance, medicinal chemistry

Abstract

Ciprofloxacin is a fluoroquinolone antibiotic that is widely used in the treatment of various bacterial infections. This study aims to analyze the mechanism of action of ciprofloxacin from a medicinal chemistry perspective, evaluate its antibacterial effectiveness against pathogenic bacteria, and identify the developing resistance patterns. The method used is a literature study by reviewing various relevant scientific literature. The results of the study indicate that ciprofloxacin works by inhibiting the enzymes DNA gyrase and topoisomerase IV, which play an important role in bacterial DNA replication and transcription, causing DNA fragmentation and bacterial cell death. Ciprofloxacin shows high antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Vibrio cholerae. However, resistance to ciprofloxacin continues to increase, mainly due to target gene mutations, increased expression of efflux pumps, and changes in porin structure. A deep understanding of the structure-activity of ciprofloxacin is important in the development of new derivatives that are more effective and able to overcome resistance. This study provides important insights into the innovation of more robust antimicrobial drug design.

References

Agustanty, A., & Budi, A. (2022). Pola resistency of Vibrio cholerae bacteria to the antibiotic ciprofloxacin and tetracycline. Journal Health & Science: Gorontalo Journal Health and Science Community, 5(3), 73–78. https://doi.org/10.35971/gojhes.v5i3.13611

Al-abror, M. L. (2021). -4 .4 15 15! 15.

Amin, S., & Meithasari, F. (2018). Peran kimia medisinal dalam pengembangan obat antikanker. 1(6), 1–40.

Amin, S., Tri, A., Pratita, K., Fathurohman, M., & Subela, S. A. (2023). Aktivitas antibakteri senyawa fikobiliprotein dari mikroalga hijau. Prosiding Seminar Nasional Diseminasi Penelitian, 3(September), 2964–6154.

Artati, A., Armah, Z., & Anwar, A. Y. (2021). Uji sensitivitas berbagai jenis antibiotik terhadap Salmonella sp yang diisolasi dari penderita demam typhoid. Jurnal Media Analis Kesehatan, 12(1), 25. https://doi.org/10.32382/mak.v12i1.2142

Budi, A., & Sembiring, N. L. (n.d.). Pola resistensi Salmonella typhi terhadap antibiotik ceftriaxone dan ciprofloxacin. Journal Health and Science: Gorontalo Journal Health & Science Community, 6.

Elshobary, M. E., Badawy, N. K., Ashraf, Y., Zatioun, A. A., Masriya, H. H., Ammar, M. M., Mohamed, N. A., Mourad, S., & Assy, A. M. (2025). Combating antibiotic resistance: Mechanisms, multidrug-resistant pathogens, and novel therapeutic approaches: An updated review. Pharmaceuticals, 18(3). https://doi.org/10.3390/ph18030402

Findings, E. (2024). Daya kerja antimikroba dan oligodinamik bakteri Escherichia coli dan Staphylococcus aureus. October. https://doi.org/10.13140/RG.2.2.16124.96647

Ledingham, M. D., Standen, P., Skinner, C., & Busch, R. (2019). “Ciprofloxacin”. The perceptual barriers faced by mental health practitioners in recognising and responding to their own burnout symptoms. Asia Pacific Journal of Counselling and Psychotherapy, 10(2), 125–145. https://doi.org/10.1080/21507686.2019.1634600

Mahmoud, A. T., Ibrahem, R. A., Salim, M. T., Gabr, A., & Halby, H. M. (2020). Prevalence of some virulence factors and genotyping of hospital-acquired uropathogenic Escherichia coli isolates recovered from cancer patients. Journal of Global Antimicrobial Resistance, 23, 211–216. https://doi.org/10.1016/j.jgar.2020.08.003

Miao, H., Wang, P., Cong, Y., Dong, W., & Li, L. (2023). Preparation of ciprofloxacin-based carbon dots with high antibacterial activity. International Journal of Molecular Sciences, 24(7). https://doi.org/10.3390/ijms24076814

Nawaz, A., Ali, S. M., Rana, N. F., Tanweer, T., Batool, A., Webster, T. J., Menaa, F., Riaz, S., Rehman, Z., Batool, F., Fatima, M., Maryam, T., Shafique, I., Saleem, A., & Iqbal, A. (2021). Ciprofloxacin-loaded gold nanoparticles against antimicrobial resistance: An in vivo assessment. Nanomaterials, 11(11). https://doi.org/10.3390/nano11113152

Resva, M., Auzal, H., & Erizal, Z. (2015). Karakterisasi fisikokimia sistem biner siprofloksasin HCl – PEG 4000. Jurnal Sains Farmasi & Klinis, 2(1), 30–35.

Retno Widowati, S. H., & Iqba Lasdi. (2019). Aktivitas antibakteri minyak nilam (Pogostemon cablin) terhadap beberapa spesies bakteri uji. 6(3), 237–249.

Thai, T., Salisbury, B. H., & Zito, P. M. (2023). Ciprofloxacin. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK535454/ (Diakses pada 14 Maret 2025, pukul 08.32).

Yuliana, A., Shaleha, R. R., Pebiansyah, A., S, R. R., Rahmiyani, I., Amin, S., Z, D. N., Hidayat, T., & Alifiar, I. (2024). Penyuluhan pencegahan resistensi antibiotik pada tenaga teknis kefarmasian. JMM (Jurnal Masyarakat Mandiri), 8(1), 1453. https://doi.org/10.31764/jmm.v8i1.20841

Downloads

Published

2025-05-02

How to Cite

Saeful Amin, Fuza Khoirun Nisa, Yosi Setiawati, & Muhammad Akbar Alfi Fauzan. (2025). Kajian Kimia Medisinal Ciprofloxacin: Mekanisme Kerja, Antibakteri, dan Pola Resistensi Bakteri. Jurnal Ilmiah Kedokteran Dan Kesehatan, 4(2), 121–131. https://doi.org/10.55606/klinik.v4i2.3923