Kajian Kimia Medisinal Ciprofloxacin: Mekanisme Kerja, Antibakteri, dan Pola Resistensi Bakteri
DOI:
https://doi.org/10.55606/klinik.v4i2.3923Keywords:
Ciprofloxacin, antibiotic, mechanism of action, bacterial resistance, medicinal chemistryAbstract
Ciprofloxacin is a fluoroquinolone antibiotic that is widely used in the treatment of various bacterial infections. This study aims to analyze the mechanism of action of ciprofloxacin from a medicinal chemistry perspective, evaluate its antibacterial effectiveness against pathogenic bacteria, and identify the developing resistance patterns. The method used is a literature study by reviewing various relevant scientific literature. The results of the study indicate that ciprofloxacin works by inhibiting the enzymes DNA gyrase and topoisomerase IV, which play an important role in bacterial DNA replication and transcription, causing DNA fragmentation and bacterial cell death. Ciprofloxacin shows high antibacterial activity against Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Vibrio cholerae. However, resistance to ciprofloxacin continues to increase, mainly due to target gene mutations, increased expression of efflux pumps, and changes in porin structure. A deep understanding of the structure-activity of ciprofloxacin is important in the development of new derivatives that are more effective and able to overcome resistance. This study provides important insights into the innovation of more robust antimicrobial drug design.
References
Agustanty, A., & Budi, A. (2022). Pola resistency of Vibrio cholerae bacteria to the antibiotic ciprofloxacin and tetracycline. Journal Health & Science: Gorontalo Journal Health and Science Community, 5(3), 73–78. https://doi.org/10.35971/gojhes.v5i3.13611
Al-abror, M. L. (2021). -4 .4 15 15! 15.
Amin, S., & Meithasari, F. (2018). Peran kimia medisinal dalam pengembangan obat antikanker. 1(6), 1–40.
Amin, S., Tri, A., Pratita, K., Fathurohman, M., & Subela, S. A. (2023). Aktivitas antibakteri senyawa fikobiliprotein dari mikroalga hijau. Prosiding Seminar Nasional Diseminasi Penelitian, 3(September), 2964–6154.
Artati, A., Armah, Z., & Anwar, A. Y. (2021). Uji sensitivitas berbagai jenis antibiotik terhadap Salmonella sp yang diisolasi dari penderita demam typhoid. Jurnal Media Analis Kesehatan, 12(1), 25. https://doi.org/10.32382/mak.v12i1.2142
Budi, A., & Sembiring, N. L. (n.d.). Pola resistensi Salmonella typhi terhadap antibiotik ceftriaxone dan ciprofloxacin. Journal Health and Science: Gorontalo Journal Health & Science Community, 6.
Elshobary, M. E., Badawy, N. K., Ashraf, Y., Zatioun, A. A., Masriya, H. H., Ammar, M. M., Mohamed, N. A., Mourad, S., & Assy, A. M. (2025). Combating antibiotic resistance: Mechanisms, multidrug-resistant pathogens, and novel therapeutic approaches: An updated review. Pharmaceuticals, 18(3). https://doi.org/10.3390/ph18030402
Findings, E. (2024). Daya kerja antimikroba dan oligodinamik bakteri Escherichia coli dan Staphylococcus aureus. October. https://doi.org/10.13140/RG.2.2.16124.96647
Ledingham, M. D., Standen, P., Skinner, C., & Busch, R. (2019). “Ciprofloxacin”. The perceptual barriers faced by mental health practitioners in recognising and responding to their own burnout symptoms. Asia Pacific Journal of Counselling and Psychotherapy, 10(2), 125–145. https://doi.org/10.1080/21507686.2019.1634600
Mahmoud, A. T., Ibrahem, R. A., Salim, M. T., Gabr, A., & Halby, H. M. (2020). Prevalence of some virulence factors and genotyping of hospital-acquired uropathogenic Escherichia coli isolates recovered from cancer patients. Journal of Global Antimicrobial Resistance, 23, 211–216. https://doi.org/10.1016/j.jgar.2020.08.003
Miao, H., Wang, P., Cong, Y., Dong, W., & Li, L. (2023). Preparation of ciprofloxacin-based carbon dots with high antibacterial activity. International Journal of Molecular Sciences, 24(7). https://doi.org/10.3390/ijms24076814
Nawaz, A., Ali, S. M., Rana, N. F., Tanweer, T., Batool, A., Webster, T. J., Menaa, F., Riaz, S., Rehman, Z., Batool, F., Fatima, M., Maryam, T., Shafique, I., Saleem, A., & Iqbal, A. (2021). Ciprofloxacin-loaded gold nanoparticles against antimicrobial resistance: An in vivo assessment. Nanomaterials, 11(11). https://doi.org/10.3390/nano11113152
Resva, M., Auzal, H., & Erizal, Z. (2015). Karakterisasi fisikokimia sistem biner siprofloksasin HCl – PEG 4000. Jurnal Sains Farmasi & Klinis, 2(1), 30–35.
Retno Widowati, S. H., & Iqba Lasdi. (2019). Aktivitas antibakteri minyak nilam (Pogostemon cablin) terhadap beberapa spesies bakteri uji. 6(3), 237–249.
Thai, T., Salisbury, B. H., & Zito, P. M. (2023). Ciprofloxacin. In StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK535454/ (Diakses pada 14 Maret 2025, pukul 08.32).
Yuliana, A., Shaleha, R. R., Pebiansyah, A., S, R. R., Rahmiyani, I., Amin, S., Z, D. N., Hidayat, T., & Alifiar, I. (2024). Penyuluhan pencegahan resistensi antibiotik pada tenaga teknis kefarmasian. JMM (Jurnal Masyarakat Mandiri), 8(1), 1453. https://doi.org/10.31764/jmm.v8i1.20841
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Kedokteran dan Kesehatan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.