Analisis Kualitas Citra Radiografi CR dengan SNR dan CNR Menggunakan Pengolahan Citra Phyton
DOI:
https://doi.org/10.55606/klinik.v5i1.5729Keywords:
Contrast-to-Noise, Histogram Equalization, Image processing, Radiography abdomen, Signal-to-NoiseAbstract
Radiography is a medical imaging technique that utilizes X-ray radiation to obtain images of organs in the body, including the abdomen. Image quality is very important in supporting the accuracy of diagnosis and can be measured objectively through the Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR) parameters. As digital technology advances, Python-based image processing offers significant potential in improving the visual and diagnostic quality of radiographic images. This study aims to analyze the effectiveness of digital image processing techniques in improving the quality of computed radiography (CR) radiography, especially in terms of increasing SNR and CNR values. This study uses an experimental approach with CR radiographic image data obtained from dr. Gunawan Mangunkusumo Ambarawa Hospital. The image was processed using the Histogram Equalization and Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithms in the Python platform. The results of the analysis showed that both methods were able to increase the SNR and CNR values, with the Equalization Histogram resulting in the highest CNR of 24.09, while the CLAHE achieved a maximum value of 16.34. Although Histogram Equalization improves global contrast, this method tends to reduce local details. In contrast, CLAHE shows excellence in maintaining anatomical structure and providing a more even contrast increase. Thus, Python-based digital image processing has proven to be effective in improving the quality of abdominal radiographic images and has the potential to be a reliable diagnostic tool in modern radiology practice.
References
Ariadi, I., Juliantara, I. P. E., & Supriyani, N. (2023). Pengaruh variasi NAQ terhadap Signal To Noise Ratio (SNR) pada MRI Lumbal Sekuen Sagittal T2-FSE (Speeder) dengan Kasus Lo Back Pain (LBP). Nautical: Jurnal Ilmiah Multidisiplin, 1(10), 1203–1211.
Astria, R. (2024). Analisis kualitas citra radiografi CR dengan Signal to Noise Ratio (SNR) dan Contrast to Noise Ratio (CNR) menggunakan MicroDicom. Interdisciplinary Journal of MedTech and EcoEngineering (IJME), 1(1), 1–9.
Bourne, R. (2020). Image processing techniques in radiographic imaging: Enhancing signal and contrast ratios. Radiology Research and Practice, 2020, Article ID 9041238. https://doi.org/10.1155/2020/9041238
Gonzalez, R. C., & oods, R. E. (2018). Digital Image Processing (4th ed.). Pearson.
Huang, Y., Zheng, Q., & Zhang, R. (2022). A revie of image quality evaluation methods in medical imaging. Journal of Biomedical Informatics, 125, 103923. https://doi.org/10.1016/j.jbi.2022.103923
Kharita, M. H., & Tsapaki, V. (2025). Automatic image quality evaluation in digital radiography using a modified version of the IAEA radiography phantom allo ing multiple detection tasks. Journal of Applied Clinical Medical Physics, September 2024, 1–12. https://doi.org/10.1002/acm2.14599
Lampignano, K. L., & Kendrick, L. E. (2018). Bontrager's textbook of radiographic positioning and related anatomy (9th ed.). Elsevier.
Matondang, Z. A. (2018). Penerapan Metode Contrast Limited Adaptive Histogram Equalization (CLAHE) pada citra digital untuk memperbaiki gambar X ray.
Melti, E., Gde, I., Kasma an, A., & Supardi, . (2024). Pengaruh eksposi terhadap kualitas citra radiografi berdasarkan ketebalan objek pada pemeriksaan abdomen. Buletin Fisika, 25, 48–53.
Muhammad Romzi, & Kurnia an, B. (2020). Pembelajaran pemrograman Python dengan pendekatan logika algoritma. JTIM: Jurnal Teknik Informatika Mahakarya, 3(2), 37–44.
Muttaqin, R. (2017). Uji banding kualitas citra radiograf sistem radiografi digital modifikasi terhadap computed radiography system dengan metode Contrast to Noise Ratio. Journal of Physics Communication, 1(1), 68–73.
Rosidah, S., Soe ondo, A., & Adi, M. S. (2020). Optimasi kualitas citra radiografi abdomen berdasarkan Body Mass Index dan tegangan tabung pada Computed Radiography. Jurnal Epidemiologi Kesehatan Komunitas (JEKK), 5(1), 23–31.
Tao, S., & Wang, Y. (2021). Signal-to-noise ratio and contrast-to-noise ratio in medical image quality assessment. Journal of Medical Imaging and Radiation Sciences, 52(1), 112–120. https://doi.org/10.1016/j.jmir.2020.12.005
Utami, N. W . M. S., Ratini, N. N., & Juliantara, I. P. E. (2022). Pengaruh kombinasi arus tabung sinar-X dan aktu eksposi terhadap Contrast to Noise Ratio (CNR) dengan menggunakan Computed Radiography. Buletin Fisika, 23(1), 26–33.
Zhao, Z., & Li, H. (2021). Enhancing medical image quality using Python-based algorithms for improved diagnosis. Biomedical Signal Processing and Control, 68, 102694.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Kedokteran dan Kesehatan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





